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CHAPTER 1 

GENERAL INTRODUCTION 

PART I: Historical Perspective of ICP-MS 

The inductively coupled plasma (ICP) is an atmospheric pressure ion source, created 

by an electrical discharge, which is maintained by radio frequency power coupled to it 

through load coils. The concept of plasma produced by radio frequency was pioneered by 

Reed1 as early as 1960s. The inductively coupled plasma (ICP) was used as the excitation 

source in atomic emission spectroscopy (AES) for multi-element analysis at trace levels 

independently by Greenfield et al.2 and Fassel et al.3"4 at late 1960s. This technique became a 

powerful tool in trace elemental analysis5"6 with the enormous effort from Fassel and 

coworkers. 

However, the analysis of trace metals by ICP-AES was hindered by spectral 

interferences. Thus, an alternative multi-element analysis method was desired, which ideally 

could circumvent the aforementioned problem yet still has the merits provided by ICP-AES, 

i.e. speed and ease of use. Mass spectrometry was an ideal candidate, which offered low 

detection limit, essential for trace level, simple spectra and adequate resolution. Gray7 

demonstrated mass spectrometry was a sensitive tool for elemental analysis by introducing 

solution into a DC plasma at atmospheric pressure. This ion source, unfortunately, was not a 

practical one for elemental analysis mainly due to its low plasma temperature (~ 4000 K) and 

the concomitant low ionization efficiency for a range of elements. In contrast, the 

inductively coupled plasma (ICP) could be maintained at much higher temperature, ~ 7000 
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K, and was, therefore, a better source for all elements. Houk et al.8 in 1980 reported the first 

analytical ICP-MS mass spectra. ICP-MS has since been rapidly developed into a standard 

and mature technique and becomes the method of choice for elemental and isotopic analysis.9 

In addition to multi-element10 (up to 70) analysis ability, ICP-MS has excellent sensitivity as 

high as 109 cps/ppm, detection limit as low as part per quadrillion, and large dynamic range, 

up to 8 orders of magnitude.11"13 It has environmental,14"16 clinical,17"19 biological,20"22 

geological,23"24 semiconductor industries25"26 and nuclear27 applications. 

ICP-MS Instrumentation 

Like in any mass spectrometer, ICP-MS also has four main components: ion source 

(the ICP), vacuum system, mass analyzer and detector. Each section will be detailed in the 

following discussion. Note that ion extraction will be treated separately although it is not 

listed as a main component. 

Inductively Coupled Plasma (ICP). Shown in Figure 1 is a schematic diagram of 

the ICP torch. It consists of three concentric quartz tubes, through which inert gas or gases, 

usually Ar, is introduced to the ICP. The outer gas, or coolant gas, flows through the outer 

tube at 15-18 L/min; This gas serves to sustain the plasma and protect the tube walls. The 

intermediate tube provides the auxiliary gas, about 1 L/min, to keep the hot plasma out the tip 

of inner tube. A third gas, called sample gas or aerosol gas, introduces the nebulized sample 

aerosol into the plasma and is usually 1 L/min. 

The torch is coupled by a water-cooled load coil, usually copper or silver, a few 

millimeters below the top end. The RF generator, operated at either 27 or 40 MHz, provides 

a power of 600-1500 watts28 to the load coil. The plasma is initiated by free electrons 
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supplied by a spark from Tesla coil. Electrons, moving in circular orbits, are accelerated by 

the induced magnetic field within the torch and collide with the argon atoms, which are 

ionized as a result. In this process, the electrical energy from the RF generator is converted 

to electrons' kinetic energy, which is the energy origin for ionization. 

The plasma is ignited and heated as a result of numerous collisions between free 

electrons and argon atoms. Most of the RF energy is coupled to the outer or induction region 

of the plasma, where the temperature can be up to 10,000 K. Gas in the center channel is 

heated mainly by conduction and radiation from the induction region, where the temperature 

is between 5,000 and 7,000 K. As the sample aerosol goes through the central channel, it 

undergoes desolvation, vaporization, atomization, ionization and finally excitation in 

sequence. Ions are subsequently extracted into the mass spectrometer from the normal 

analytical zone (NAZ) of the plasma. 

Vacuum System. Note that the ICP is operated at atmospheric pressure and ions 

produced are at ambient atmosphere as well. Mass spectrometry, in comparison, requires a 

high vacuum condition (less than 10"5 torr) so that ions can reach the detector without 

substantial loss by collision with background gas. Therefore, the ICP-MS instrument 

requires a differential pumping system. Most ICP-MS instruments have three stages of 

pumping, separated by three orifices, namely sampler, skimmer and differential pumping 

orifice. A mechanical pump is used in the first stage, which is between the sampler and 

skimmer. The pressure is approximately 1 torr at this stage. The second stage houses the ion 

lenses, which are located right behind the skimmer. The pressure is maintained at about 10"4 

torr through either a turbo or diffusion pump. The third stage begins after the ion lens, where 
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mass analyzer is held. If necessary, additional ion lenses are set in the third stage to help 

better focus and transmit ions to detector. The pressure is typically 10"5 torr or less. 

Ion Extraction. Ion extraction process from plasma into the vacuum is critical for 

ICP-MS measurement because it affects ion transmission efficiency and eventually the 

overall sensitivity. Ions generated by the ICP, a quasi-neutral mixture of neutrals, electrons 

and ions, flow through a sampler to the first vacuum stage. The sampler hole is 

approximately 1 mm in diameter and cooled by water. The gas sampled by the sampling 

orifice expands to form a supersonic jet due to the substantial pressure difference between 

atmosphere (1 atm) and the vacuum in the first stage chamber (1 torr). Collisions occur in 

the first few orifice diameters after the sampled gas passes the sampling orifice. The zone of 

silence, free of collision, is located downstream of the supersonic jet, where the entrained 

ions obtain the same supersonic velocity as neutral gas molecules. The skimmer, with an 

orifice diameter of 0.8 mm (slightly smaller than sampler), is positioned at roughly two-

thirds of the distance to the onset of Mach disc to further extract ions. This sampling 

happens in such a short period of time, ~3 |is, that ions change little in nature or relative 

percentage, and recombination between ions and electrons is minimal. 

After ions leave the skimmer, they are escorted to the mass analyzer by a series of ion 

lenses. The quasi-neutral condition breaks down because only positively charged ions are 

focused while electrons are expelled and most of the neutrals are pumped. The extracted ion 

beam is subsequently guided to the mass analyzer, where the mass-to-charge separation is 

realized. 

Ion Detection. The discrete dynode electron multiplier (EM) can be used for direct 

current measurements (analog detection mode) or for pulse counting measurement (counting 



www.manaraa.com

5 

detection mode). Analog mode is more suitable for high ion signal to extend the dynamic 

range, which otherwise will be saturated by the gain of the detector. As in counting mode, 

the electron pulse is sensed and pre-amplified, which then goes to a digital discriminator set 

at a certain threshold to reduce the random and unspecified noise. In contrast, this mode 

works better for low ion signal intensities. 

Mass Spectrometers. Almost every major type of commercially available mass 

spectrometer has been coupled with the ICP source. The first mass analyzer used with the 

ICP was quadrupole mass filter,8'29 which remains the most common used mass spectrometer 

in ICP-MS mainly due to its ease of use and affordability. However, these devices only 

provide unit resolution, about 400 (m/Am) in the first stability region for ICP-MS purposes. 

This resolving power is not enough to separate different ions with the same nominal mass. It 

is known the most severe drawback in ICP-MS is the spectral interference posed by 

polyatomic ions associated with plasma gas, i.e. Ar. It requires, for example, about 2500 

resolving power in order to separate 56Fe+ (53.9349) from 40Ar16O+ (53.9573), which is not 

attainable with quadrupole analyzer. More details about quadrupole will be addressed in the 

second part. Other mass analyzers include magnetic sector,30 time-of-flight (TOF),31-33 ion 

trap34"35 and ion cyclotron resonance (ICR).36 

Work on the ICP-MS part of this dissertation is done with a magnetic sector mass 

analyzer. This instrument provides a mass resolution up to 12,000.30'37-38 This allows the 

elimination of almost all spectral interference caused by polyatomic ions, which makes 

accurate elemental analysis for some problematic elements possible. The device is a double 

focusing sector mass spectrometer with reverse Nier-Johnson geometry. The magnetic sector 

separates ions according to their mass-to-charge ratios and provides the directional focusing 
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at the same time. The second focusing is achieved by an electrostatic analyzer (ESA), 

proceeded by the sector. Only ions with the same energy range have the same moving radius 

in ESA, which thereby reduces velocity broadening. 

Sample Introduction. Sample introduction is one of the most important factors in 

ICP-MS measurements to obtain accurate and precise results.10 For instance, a change in 

plasma temperature would alter the ionization efficiency of different elements. An ideal 

sample introduction system would generate aerosol that represents the sample solution, has 

constant density and small droplet distribution. 

There are a variety of sample introduction systems for ICP-MS. Solution 

nebulization is most widely used to deliver liquid sample as an aerosol of fine droplets to the 

ICP, where they undergo desolvation, vaporization, atomization and ionization. A pneumatic 

nebulizer is a typical sample introduction system, in which the liquid sample is delivered to a 

thin tube, nested inside a large one. Gas, usually Ar, is supplied to the outer tube and shatters 

the liquid into droplets and then fine aerosol at the nebulizer tip. The aerosol produced often 

has a wide range of particle size distribution. A chamber, usually located right after the 

nebulizer, is used to remove large particles, while allowing small ones to proceed to the 

plasma directly. Low nebulization efficiency, less than 2%, is the disadvantage of 

conventional pneumatic nebulizer. Several other nebulizers have been designed to improve 

sample introduction efficiency. These categories include ultrasonic nebulizer,39"40 direct 

injection nubulizer41"43 and microconcentric nebulizer (MCN). Of particular note is the 

microconcentric nebulizer, which gains increasing popularity for its high efficiency (>50%) 

and reduced sample uptake (< 0.2 L/min from 1 L/min). Shown in Figure 2 is a schematic 

diagram of solution sample introduction system to ICP-MS. It consists of a microconcentric 
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nebulizer and a spray chamber. Solution sample introduction offers certain advantages, such 

as ease of calibration solution standards and possibility of LC-ICP-MS experiments. 

Solution method, nevertheless, is not suitable for the direct analysis of solid sample, 

which is often dissolved by acid. The process might be labor extensive, time consuming and 

risky of contamination. Therefore, several techniques have been used for direct solid sample 

introduction to the ICP, which includes arc ablation,44 glow discharge,45 electrothermal 

evaporation46 and laser ablation.47"48 

Surface Analysis by ICP-MS 

There is a growing demand for analytical methods that can determine the elemental 

composition of surface layers of solids. Mass spectrometric methods for the surface analysis 

of inorganic elements, at trace or ultratrace level, providing sensitive and multi-elemental 

analysis capabilities, have been established. Of the methods suitable for surface analysis, 

secondary ion mass spectrometry (SIMS) is most widely used to analyze trace elements on 

different solid surfaces or thin layers.49 The profiled depth is in the range of 1-10 nm, which 

depends on various factors such as energy and mass of incoming ions, nature of the sample 

materials. Laser ablation ICP-MS50 can also be used in surface analysis although the crater 

depth produced by LA is deeper than in SIMS. Advantages of direct surface analysis include 

less time and cost for sample preparation and minimal contamination. Quantification for 

solid sample, however, is usually difficult if no matrix-matched standard reference material is 

available. 

ICP-MS, a well-established method for solution analysis, gains increasing popularity 

for the analysis of solid sample after dissolution 49 Compared to the direct solid analysis, 
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acid dissolution51 has long been used in the preparation of solid samples. Vapor phase 

decomposition (VPD) was applied to determine atomic impurities in silicon oxide layers in 

semiconductor production.52 Douglas et al.53 used rapid sample dissolution by electroerosion 

with concentrated HC1 or HNO3 as sample introduction to ICP-MS. Dissolution with 

concentrated mineral acid, i.e. HNO3, was used to determine tungsten in drugs.54 Microwave 

coupled acid decomposition55"56 is the other widely used method because it is relatively easy 

to control microwave power to dissolve refractory materials. The potential drawbacks of 

solid analysis by acid dissolution are possible sample contaminations and time and cost 

involved in the sample preparation. 

LC-ICP-MS and its Applications to Bacteria 

It is known that many elements are essential to human health, whereas others are 

considered to be toxic. It is the specific elemental forms that strongly affect its uptake, 

accumulation, transport and interaction with metalloids. Therefore, complete 

characterization, i.e. oxidation state, chemical ligand association and complex form, is crucial 

to assess elemental essentiality vs toxicity. Elemental speciation typically consists of 

separation technique, which is followed by a sensitive and element-specific detector. Of 

various combinations of separation and detection methods, high performance liquid 

chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) has 

emerged as one of the most popular techniques due to its sensitivity, multi-elemental 

capability, versatility and robustness. A wide range of separation mechanisms have been 
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coupled with ICP-MS, including three most widely used separations, i.e. reverse phase 

(RP),57 size exchange chromatography (SEC)58 and ion-exchange chromatography (IEC).59 

Houk and Thompson40 in 1986 first demonstrated ICP-MS as an on-line multi-

elemental detector for HPLC. The publication of that hyphenate HPLC with ICP-MS has 

increased dramatically since then.60 This work focuses significantly on environmental,15"16'24 

clinical,17'19,61-62 and biological applications.16'21'63-64 

Size exclusion chromatography coupled with ICP-MS has been used for the analysis 

of biological molecules.65 Perfusion chromatography, a special version of SEC, was applied 

to separate microbes from large and small molecules.66 Various groups have demonstrated 

the unique utility of LC-ICP-MS in the determination of trace elements in bacteria.67"70 
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PART II: Historical Perspective of Electrospray Mass Spectrometry 

The electrospray process was studied experimentally as early as 1917 by Zeleny,71 

long before its application to mass spectrometry. Then it was Dole et al.72"73 who took the 

first step to combine electrospray technique with mass spectrometry, in which they tried to 

determine the molecular weight distribution of synthetic polystyrene. Although with some 

success in Dole's situation, the idea of using electrospray as an ionization technique for mass 

spectrometry was almost abandoned. It was not until 1984 when Yamashita and Fenn74"75 

successfully demonstrated electrospray as an ionization method for mass spectrometry. Even 

since then, combination of electrospray, a soft-ionization process which preserves the 

structural information of analytes as in the solution, and mass spectrometry has 

revolutionized the study of biomolecules.76-79 At approximately the same time, Aleksandrov 

et al.80 investigated inorganic ions by ESI-MS. The application of ESMS as a tool to probe 

the inorganic chemistry81-82 has witnessed the exponential growth in publications in the past 

ten years. 

Electrospray Ionization Process 

Electrospray is a technique that transfers ions from solution to gas phase. There are 

three major steps responsible for the production of gas-phase ions as illustrated sequentially 

in Figure 3: (1) the production of charged droplets; 2) solvent evaporation and repeated 

droplet fission, and (3) final generation of gas phase ions. 

Production of Charged Droplets. Shown in stage I of Figure 3 is a scheme of the 

production of charged droplets (only positive mode is exampled for simplicity). Analyte 
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solution is pumped (-1-10 gL/min) through an open-ended metal capillary, often held at 2-4 

kV, which is located about 0.5-3 cm from the counter-electrode, usually grounded. The 

electric field at the capillary tip is extremely high, ~106 V/m for instance,83 because of the 

small capillary tip, -100 pm. In the pure ES mode, electrostatic interaction is the only force 

for droplet formation. The high electric field Ec penetrates the solution at the tip and 

separation of positive and negative ions takes places. In positive ES mode, positive ions drift 

downstream to the counter electrode, while negative ones move in the opposite direction. 

When the mutual repulsion of positively charged species at the surface exceeds the surface 

tension, the surface begins to expand and the so-called Taylor cone84 is formed. Under 

strong electric field, the cone is not stable and fine filament is emitted, from which the 

charged droplets are formed downstream. In a more common pneumatically assisted ES, a 

nebulization gas, usually air or N%, is applied to facilitate droplet formation. This results in a 

more stable spray current because of the more consistent production of aerosol, which 

otherwise will be affected by high solution flow rate or sample matrix. Another common 

source is known as "nanoelectrospray" or "nanospray"85 and uses extremely small inner 

diameter tip, 1-2 ^m. Advantages include better ion production efficiency due to high 

charge-to-mass ratio and significant low sample consumption rate, 20-40 nL /min,86 which is 

particularly important for precious biological samples. 

Solvent Evaporation and Repeated Droplet Fission. As the charged droplets travel 

toward the MS entrance, the solvent is evaporated mainly by the high temperature (250 °C) 

within the heated capillary and partially by thermal energy of the ambient air. The organic 

solvent is usually added to increase evaporation rate. The charge on the droplets remains 

constant during this process because the emission of ions at this stage is highly endoergic. 
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The droplets shrink as a result. With the decrease of droplet radius, the surface charge 

density increases to the Rayleigh stability limit, when droplets undergo "uneven fission". 

This means two or more particles with unequal mass and charge are generated. Gomez and 

Tang87 estimated that these small offspring droplets contain only 2% mass of parent droplets 

while retaining 15% of the charge, a 7-fold increase on the charge-to-mass ratio. This cycle 

of solvent evaporation and Rayleigh fission occurs repeatedly, leading to even smaller 

charged droplets. 

Generation of Gas Phase Ions. There are two mechanisms proposed for the 

formation of gas phase ions from small, highly charged droplets, although neither model 

receives unanimous acceptance.88"90 The first one is Dole's Charged Residue Model 

(CRM).91 It reasons that a droplet that contains only one ion will be formed eventually after 

cycles of solvent evaporation and Rayleigh fission, as supported by some recent work.92 The 

ion may be a single ion or solvated one. The second mechanism is ion evaporation model 

(IBM), proposed by Iribame and Thomson.93"94 The charged droplets undergo the same 

physical changes as in CRM. However, the solvated gas-phase ions are emitted directly from 

the droplet surface when the electrostatic repulsion is sufficient to overcome the surface 

tension. This intermediate stage of droplet evolution depends mainly on the number of 

charges on the droplet and the radius of the droplet. 
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Triple Quadrupole Mass Spectrometer 

Quadrupole Mass Analyzer. A quadrupole consists of four hyperbolic, equidistant 

metal rods, which are mounted to very high dimensional accuracy (<10 (jm). RF and DC 

voltages are applied to the opposite pairs, which are connected together. The DC voltage is 

positive for one pair and negative for the other while RF voltages are the same in magnitude 

but 180° out of phase. The ions are injected along the axis and only ions of interest will have 

a stable trajectory through the rods whereas others are deflected if DC and RF voltages are 

chosen properly.95"96 Quadrupole mass analyzer97 has been widely used, especially for 

applications where accurate mass measurement and high resolution are not required. There 

are advantages of quadrupole mass analyzer, i.e.l) it can be operated at relatively high 

pressure, ~10"5 torr, 2) it is a mechanically simple device and thus easy to use. 

Triple Quadrupole Mass Analyzer. The core of a triple-stage quadrupole mass 

spectrometer, as shown in Figure 4, is the quadrupole. The configuration follows the 

sequence as Ql, first mass analyzer, Q2, a collision cell and Q3, the second mass analyzer. 

Obviously, this instrument has two mass analyzers Ql and Q3, which enable the capability of 

tandem in space mass spectrometry function in addition to the full scan performance. 

ESI-MS of Inorganic Ions and Threshold Study 

Unlike most atomic-based ionization techniques, such as the ICP, electrospray does 

not really create ions. Rather, it transfers ions in solution to the gas phase. Thus, the softness 

of the ionization process preserves important solution information, such as the oxidation state 

and form of an ion, which is crucial for inorganic ions in toxicology. For instance, the 

biological role of chromium varies greatly depending on its chemical form. Crm is an 
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essential nutrient for living organisms, believed to help activate insulin,98 whereas CrVI can 

cause various forms of cancer.99 Electrospray, which preserves structural information, is 

helpful to study chromium speciation. ES-MS has been applied in the determination of most 

elements across the periodic table, including alkali,100"101 alkaline earth,102"103 transition 

metals,104"107 the lanthanides108"109 and some non-metals, such as halides.110 Most of these 

studies focus on metal-ligand complexes, which range from counter-ion to solvent, from 

multi-dendate ligands to biological molecules. 

Mass spectrometry is more than a structural tool and has useful capabilities in 

thermochemistry. Armentrout111 shows the ability to measure thermochemical properties by 

tandem mass spectrometry, using a specially designed guided ion beam mass spectrometry. 

Thermochemistry studies by collisionally induced dissociation (CID)112"115 have been 

extensively carried out for both main group elements116"117 and transition metal ions.118"119 

However, there is no report of using a commercially available triple quadrupole instrument to 

estimate the thermochemistry. 

Dissertation Objective and Organization 

This dissertation concentrates on novel applications of both ICP-MS and ESI-MS on 

inorganic and biological materials, i.e. bacteria. Chapter 2 is a manuscript accepted by 

Applied Spectroscopy that describes a new surface analysis method of steel by controlled 

dissolution with ICP-MS. Chapter 3 is a manuscript, ready to submit to Analytical Chemistry 

for publication, which investigates the behavior of bacteria in the ICP and its influence in the 

quantification of U in bacteria calibrated by inorganic U standard. This is a continuation of 

the previous project "Coupling Perfusion Chromatography with ICP-MS to Monitor 
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Microbial Removal of Uranium", published in Analytical Chemistry (see APPENDIX). Our 

results lay out the possible platform for the direct quantification of trace elements within 

bacteria by using inorganic standards instead of microorganisms with known amount of 

metal, and show firstly that bacteria behave similarly as large wet droplets in the ICP. 

In Chapter 4, the formation of metal nitrate complexes in negative ES mode and their 

collision-induced dissociation patterns are investigated. The commercial-grade triple 

quadrupole instrument is applied to estimate the dissociation threshold of Fe(NOs)4~. The 

study has been published in Journal of the American Society for Mass Spectrometry. A 

general conclusion with some suggestions for future work can be found in Chapter 5. 



www.manaraa.com

16 

References: 

1. Reed, T. B. J. Appl. Phys. 1961, 32, 821. 

2. Greenfield, S.; Jones, I. L.; Berry, C. T. Analyst 1964, 89, 713. 

3. Wendt, R. H.; Fassel, V. A. Anal. Chem. 1965, 37, 920. 

4. Fassel, V. A. Science 1978, 4364, 183. 

5. Dickinson, G. W.; Fassel, V. A. Anal. Chem. 1969, 41, 1021. 

6. Fassel, V. A.; Kniseley, R. N. Anal. Chem. 1974, 46, 1110A. 

7. Gary, A. L. Analyst 1975, 100, 289. 

8. Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E. 

Anal. Chem. 1980, 52, 2283. 

9. Houk, R. S. Acc. Chem. Res. 1994, 27, 333. 

10. Jarvis, K. E.; Gray, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma 

Mass Spectrometry, Blackie & Son, Glagow, 1992. 

11. Houk, R. S. Anal. Chem. 1986, 58, 97A. 

12. Montaser, A. Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, 

New York, 1998. 

13. Houk, R. S. in Handbook of Elemental Speciation: Techniques and 

Methodology, John Wiley & Sons, New York, 2003. 

14. Huang, C. W.; Jiang, S. J. J. Anal. At. Spectrom. 1993, 8, 681. 

15. Rodushkin, I.; Ruth, T. J. Anal. At. Spectrom. 1997, 12, 1181. 

16. Bird, S. M.; Uden, P. C.; Tyson, J. F.; Block E.; Denoyer, E. J. Anal. At. Spectrom. 

1997, 12, 785. 

17. Shum, S. C. K.; Pang, H. M.; Houk, R. S. Anal. Chem. 1992, 64, 2444. 



www.manaraa.com

17 

18. Probst, T. U.; Berryman, N. G.; Lemmen, P.; Weissfloch, L.; Auberger, T.; Gabel, 

D.; Carlsson, J.; Larsson, B. J. Anal. At. Spectrom. 1997, 12, 1115. 

19. Lafuente, J. M. G.; Dlaska, M.; Sanchez, M. L. F.; Sanz-medel, A. J. Anal. At. 

Spectrom. 1998, 13, 423. 

20. Crews, H. M.; Clarke, P. A.; Lewis, D. J.; Owen, L. M.; Strutt, P. R.; Izquierdo, A. 

J. Anal. At. Spectrom. 1996, 11, 1177. 

21. VandenBroeck, K.; Vandecasteele, C.; Geuns, J. M. C. J. Anal. At. Spectrom. 1997, 

12, 987. 

22. Kotrebai, M.; Birringer, M.; Tyson, J. F.; Block, E.; Uden, P. C. Analyst 2000, 125, 

71. 

23. Hall, G. E. M.; Pelchat, J. -C. J. Anal. At. Spectrom. 1997, 12, 103. 

24. Carignan, J.; Hild, P.; Mevelle, G.; Morel, J.; Yeghicheyan, D. Geostand. Newslett. 

2001, 25, 187. 

25. Morin, M.; Kimura, T.; Koyanagi, M.; Hirose, M.; Friedt, J. M. Solid State Tech. 

1993, 36(4), 45. 

26. Ajluni, C. Electronic Design 1995, 43(14), 38. 

27. Heres, A. P.; Noe, M. C. Nuclear Technology 1996, 115, 146. 

28. Greenfield, S.; Montaser, A. Inductively Couple Plasmas in Analytical Atomic 

Spectroscopy Montaser, A.; Golightly, D. W. eds.; 2nd edition, VCH, London, 

1992. 

29. Date, A. R.; Gray, A. L. Analyst 1981, 106, 1255. 

30. Bradshaw, N.; Hall, E. F. H.; Sanderson, N. E. /. Anal. At. Spectrom. 1989, 4, 801. 



www.manaraa.com

18 

31. Myers, D. P.; Li, G.; Mahoney, P. P.; Hieftje, G. M. J. Am. Soc. Mass Spectrom. 

1995, 6,400. 

32. Mahoney, P. P.; Ray, S. J.; Myers, D. P.; Li, G.; Yang, P.; Hieftje, G. M. Abstr. 

Pap. Amer. Chem. Soc. 1996, 211, 7. 

33. Mahoney, P. P.; Ray, S. J.; Hieftje, G. M. Appl. Spectrosc. 1997, 51, A16. 

34. Koppenaal, D. W.; Barinaga, C. J.; Smith, M. R. J. Anal. Atom. Spectrom. 1994, 9, 

1053. 

35. Barinaga, C. J.; Koppenaal, D. W. Rapid commun. Mass Spectrom. 1994, 8, 71. 

36. Milgram, K. E.; White, F. M.; Goodner, K. L.; Watson, C. H.; Koppenaal, D. W.; 

Barinaga, C. J.; Smith, B. H.; Winefordner, J. D.; Marshall, A. G.; Houk, R. S.; 

Eyler, J. R. Anal.Chem. 1997, 69, 3714. 

37. Jakubowski, N.; Moens, L.; Vanhaecke, F. Spectrochim. Acta Part B 1998, 53, 

1739. 

38. Latkoczy, C.; Prohaska, T.; Stingeder, G.; Wenzel, W. W. Fresenius' J. Anal. 

Chem. 2000, 368, 256. 

39. Mermet, J. M.; Pobin, J. P. Anal. Chem. 1968, 40, 1918. 

40. Thompson, J. J.; Houk, R. S. Anal. Chem. 1986, 58, 2541. 

41. LaFreniere, K. E.; Fassel, V. A.; Eckels, D. E. Anal. Chem. 1987, 59, 879. 

42. Wiederin, D. R.; Smith, F. G.; Houk, R. S. Anal. Chem. 1991, 63, 219. 

43. Aeon, B. W.; McLean, J. A.; Montaser, A. J. Anal. At. Spectrom. 2001, 16, 852. 

44. Jiang, S. J.; Houk, R. S. Anal. Chem. 1986, 58, 1739. 

45. Hang, W.; Walden, W. O.; Harrison, H. W. Anal. Chem. 1996, 68, 1148. 

46. Park, C. J.; Hall, G. E. M. J. Anal. At. Spectrom. 1987, 2, 473. 



www.manaraa.com

19 

47. Gray, A. L. Analyst 1985, 110, 551. 

48. Aeschilman, D. B.; Bajic, S. J.; Baldwin, D. B.; Houk, R. S. J. Anal. At. Spectrom. 

2003.18, 1008. 

49. Becker, J. S.; Dietze, H. -J. Spectrochim. Acta Part B 1998, 53, 1475. 

50. Horn, I.; Guillong, M.; Gunther, D. Appl. Surface Sci. 2001, 182, 91. 

51. Bock, R. A Handbook of Decomposition Methods in Analytical Chemistry, 

Wiley & Sons, 1979. 

52. Krushevska, A.; Tan, S.; Passer, M.; Liu, X. R. J. Anal. At. Spectrom. 2000, 15, 

1211. 

53. Douglas G.; Michael B.; Gundars R. Spectrochim. Acta Part B 2003, 58, 1325. 

54. Wang, T. B.; Ge, Z. H.; Wu, J.; Li, B.; Liang, A. -S. J. Pharm. Biomed. Analysis 

1999.19, 937. 

55. Kingston, H. M.; Jassie, L. B. Materials Research Society Symposium Proceedings 

1998, 124(Microwave Process. Mater.), 121. 

56. Kingston, H. M.; Jassie, L. B. J. Res. Natl. Bur. Stand. (U. S.) 1998, 93, 269. 

57. Montes-Bayon, M.; B'Hymer, C.; Leon, C. P.; Caruso, J. A. J. Anal. At. Spectrom. 

2001, 16, 945. 

58. Szpunar, J. Analyst 2000, 125, 963. 

59. Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M. J. Anal. At. Spectrom. 2001, 16, 1403. 

60. Montes-Bayon, M.; DeNicola, K.; Caruso, J. A. J. Chromatogr. A 2003, 1000, 457. 

61. Nagaoka, M. H.; Maitani, T. Analyst 2000, 125, 1962. 

62. Evans, E. H.; Caruso, J. A. J. Anal. Atom. Spectrom. 1993, 8, 427. 

63. Vela, N. P.; Heitkemper, D. T.; Stewart, K. R. Analyst 2001, 126, 1011. 



www.manaraa.com

20 

64. Francesconi, K.; Visoottiviseth, P.; Sridokchan, W.; Goessler, W. Sci. Total 

Environ. 2002, 284, 27. 

65. Wang, J.; Dreessen, D.; Wiederin, D. R.; Houk, R. S. J. Amer. Chem. Soc. 1998, 

120, 5793. 

66. Berthod, A.; Zhang, B.; Armstrong, D. W. J. Sep. Sci. 2003, 26, 20. 

67. Allardyce, C. S.; Dyson, P. J.; Abou-Shakra, F. R.; Birtwistle, H.; Coffey, J. Chem. 

Commu. 2001, 24, 2708. 

68. Kuroda, K.; Yoshida, K.; Yasukawa, A.; Wanibuchi, H.; Fukushima, S.; Endo, G. 

Applied Organometallic Chemistry 2001, 15, 548. 

69. Michalke, B.; Witte, H.; Schramel, P. J. Anal. At. Spectrom. 2001, 16, 593. 

70. Leopold, I.; Fricke, B. Analytical Biochemistry 1997, 252, 277. 

71. Zeleny, J. (P/iys. %e,v. 1917, 9, 562. 

72. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. J. 

Chem. Phys. 1968, 49, 2240. 

73. Mack, L. L.; Kralik, P.; Rheude, A.; Dole, M. J. Chem. Phys. 1970, 52, 4977. 

74. Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4451. 

75. Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88,4671. 

76. Chait, B. T.; Kent, S. B. Science 1992, 257, 1885. 

77. Gatlin, C. L.; Turecek, F. in Electrospray Ionization Mass Spectrometry-

Fundamentals, Instrumentation, and Applications, Cole, R. B. Wiley: New York, 

1997, p527. 

78. Burlingame, A. L.; Boyd, R. K.; Gaskell, S. J. Anal. Chem. 1996, 68, 599R. 

79. Colton, R.; D'Agostino, A.; Traeger, J. C. Mass Spectrom. Rev. 1995, 14, 79. 



www.manaraa.com

21 

80. Aleksandrov, M. L.; Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Shkurov, V. A. 

Zh. Anal. Khim. 1985, 40, 1570. 

81. Stewart, 1.1.; Horlick, G. Trends Anal. Chem. 1996, 15, 80. 

82. Stewart, 1.1. Spectrochim. Acta Part B 1999, 54, 1649. 

83. Kebarle, P.; Ho, Y. H. in Electrospray Ionization Mass Spectrometry-

Fundamentals, Instrumentation, and Applications, Cole, R. B. Wiley: New York, 

1997, p8. 

84. Taylor, G. I. Proc. Roy. Soc. A. 1964, 280, 383. 

85. Wilm, M.; Mann, M. Int. J. Mass Spectrom. Ion Processes 1994, 136, 167. 

86. Wilm, M.; Mann, M. Anal. Chem. 1996, 68, 1. 

87. Kebarle, P.; Tang, L. Anal. Chem. 1993, 65, 972A. 

88. Fenn, J. B. J. Am. Soc. Mass Spectrom. 1993, 4, 524. 

89. Tang, L. ; Kebarle, P. Anal. Chem. 1993, 65, 3654. 

90. Winger, B. E.; Light-Wahl, K. J.; Ogorzalek-Loo, R. R.; Udseth, H. R.; Smith, R. 

D. J. Am. Soc. Mass Spectrom. 1993, 4, 536. 

91. Striegel, A. M.; Timpa, J. D.; Piotrowiak, P.; Cole, R. B. Int. J. Mass Spectrom. Ion 

Processes 1997, 162, 45. 

92. Wang, G. D.;Cole, R. B. Anal. Chem. 1998, 70, 873. 

93. Iribame, J. V.; Thomson, B. A. J. Chem. Phys. 1976, 64, 2287. 

94. Thomson, B. A.; Iribame, J. V. J. Chem. Phys. 1979, 71, 4451. 

95. Miller, P. E.; Denton, M. B. J. Chem. Educ. 1986, 63, 617. 

96. Dawson, P. H. Mass spectrom. Rev. 1986, 5, 1. 



www.manaraa.com

22 

97. McEwen, P. E.; Larsen, B. S. in Electrospray Ionization Mass Spectrometry-

Fundamentals, Instrumentation, and Applications, Cole, R. B. Wiley: New York, 

1997, pl77. 

98. Da Silva, J.; Williams, R. The Biological Chemistry of the Elements, the Inorganic 

Chemistry of Life, Clarendon Press, Oxford, NY, 1991, p541. 

99. Ottaway, J. M.; Fell, G. S. Pure Appl. Chem. 1986, 58, 1707. 

100. Fish, K. J.; Henderson, W.; Dance, I. G.; Willett, G. D. J7. Cfum. Soc. <DaCton Trans. 

1996, 21,4109. 

101. Young, D. -S.; Hung, H. -Y.; Liu, L. K. Rapid Commun. Mass Spectrom. 1997, 11, 

769. 

102. Fery-Forgues, S.; Lavabre, D.; Rochal, A. D. N. J. Chem. 1998, 22, 1531. 

103. Wang, K. S.; Gokel, G. W. Pure Appl. Chem. 1996, 68, 1267. 

104. Bortolini, O.; Conte, V.; DiFuria, F.; Moro, S. Eru. J. Inorg. Chem. 1998, 8, 1193. 

105. Bond, A. M.; Colton, R.; Gable, R. W.; Mackay, M. F.; Walter, J. N. Inorg. Chem. 

1997, 36,1181. 

106. Bates, G. B.; Cole, E.; Parker, D.; Kataky, R. J. Chem. Soc. Dalton Trans. 1996, 13, 

2693. 

107. Romero, F. M.; Ziessel, R.; Dupont-Gervais, A.; Van-Dorsselaer, A. Chem. 

Commun. 1996,4,551. 

108. Lau, R. L. C.; Jiang, J. Z.; Ng, D. K. P.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 

1997, 8, 161. 

109. Renaud, F.; Piguet, C.; Bernardinelli, G.; Bunzli, J. C. G.; Hopfgartner, G. Chem. 

Eur. J. 1997, 3, 1646. 



www.manaraa.com

23 

110. Blades, A. T.; Klassen, J. S.; Kebarle, P. J. Am. Chem. Soc. 1995, 117, 10563. 

111. Armentrout, P. B. J. Am. Soc. Mass Spectrom. 2002,13, 419. 

112. Muntean, F.; Armentrout, P. B. J. Chem. Phys. 2001, 115, 1213. 

113. Armentrout, P. B. Int. J. Mass Spectrom. 2000, 200, 219. 

114. Ariston, N.; Armentrout, P. B. J. Cluster Science 1990,1, 127-142. 

115. Rodgers, M. T.; Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1997,106, 4499. 

116. Rodgers, M. T.; Armentrout, P. B. J. Phys. Chem. A 1997, 101, 1238. 

117. Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P. B. J. Phys. Chem. A 

2000,104, 692. 

118. Rodgers, M. T.; Armentrout, P. B. Mass Spectrom. Rev. 2000, 19, 215. 

119. Aristov, N.; Armentrout, P. B. J. Phys.Chem. 1986, 90, 5135. 



www.manaraa.com

24 

Normal Analytical zone (NAZ) 
mm 

25- Initial Radiation zone (IRZ) 
20-

15-

10-

Load Coil 

Induction Region 

Plasma Gas 

Sample Gas 

Figure 1: Schematic diagram of the ICP torch 

ICP Nebulizer 

Sample 

Aerosol 
Gas Ar 

Spray 
Chamber 

WASTE 

Figure 2: Nebulizer and spray chamber 



www.manaraa.com

25 

Excess charge built 
on the surface 

Taylor cone 

+ 5kV 

100jj.s - 1ms 

l-30mm 

MS Inlet J 
1 

Time 

Distance 

Figure 3: Schematic diagram of electrospray 

d e f 

iff* 

g h i 

I 

0.5-1.0 Torr ~ ~ 10 mTorr 

SKIMMER TURBO 
PUMP PUMP 

lO 6  Tor r  

TURBO 
PUMP 

[STr 

2̂ 

Figure 4: Schematic diagram of TSQ 7000 ESI-MS. a)capillary tube, 
b) tube lens, c)octopole, d)lens set 1(LS1), e) Ql, f)lens set 2(LS2), 
g) Q2, collision cell, h) lens set 3(LS3), i) Q3, j)L41, k) detector 



www.manaraa.com

26 

CHAPTER 2 

CONTROLLED DISSOLUTION FOR ELEMENTAL ANALYSIS OF 

SAMPLE LAYERS BY INDUCTIVELY COUPLED PLASMA - MASS 

SPECTROMETRY: A FEASIBILITY STUDY 

A paper accepted by Applied Spectroscopy 

Fumin Li and R. S. Houk 

ABSTRACT 

Aqueous acid mixtures at room temperature are used to partially dissolve steel 

samples. The dissolved elements are washed off the surface, diluted, and then determined by 

inductively coupled plasma - mass spectrometry (ICP-MS) using a magnetic sector mass 

analyzer. The amount of material removed is measured from the amount of Fe dissolved and 

increases linearly with HNO3 concentration in the etch acid. Analyte concentrations in the 

solid are determined from the signal ratio of "(analyte ion)/Fe+". The shape of a plot of mass 

of element removed vs. nitric acid concentration yields information about the efficiency of 

the removal process and the likely chemical form of the element in the sample. For elements 

like Mn, A1 and W in steel, these plots have the same linear shape as that for the major 

element (Fe), and the measured concentrations agree well with the certified values. For 

problem elements like Nb and Ta, the plots have two linear regions with different slopes, and 
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measured concentrations are lower than the certified values. Laser ablation ICP-MS and 

scanning electron microscopy (SEM) measurements show these elements to be associated 

together in the solid in refractory grains that are not dissolved to the same extent as the Fe 

matrix. For steel, the amount of Fe dissolved corresponds to an average depth of at least 4 

(o,m or 20,000 atomic layers. 

INTRODUCTION 

There is a growing demand for analytical methods that can determine the elemental 

composition of thin solid layers. New applications include semiconductors, layered 

materials, and nanomaterials. Secondary ion mass spectrometry (SIMS) and Auger electron 

spectroscopy are two established methods for this task. In particular, SIMS provides depth 

resolution of the order of a monolayer as well as lateral resolution. Within the purview of 

atomic spectroscopy, certain variations of X-ray fluorescence,1"3 and glow discharge 

emission spectrometry4"6 and MS7"10 have potential value for layer analysis with depth 

resolution in the sub-micrometer range. These latter three methods do not provide lateral 

resolution; laser ablation ICP-MS11"12 can do so. 

One general weakness of some of these methods is a variation of analyte signal with 

the matrix composition. Thus, quantitative analysis often requires matrix-matched standards. 

It is not easy to make such materials for solid samples. Rutherford backscattering 

spectrometry (RBS)6'13-14 is an exception in that solid calibration standards are usually not 

required. RBS also provides some depth resolution, usually ~ 10 nm but sometimes as good 

as a few Â. It is usually nondestructive, unless additional sputtering is employed to provide 

access to buried layers, and some facilities can make RBS measurements with samples 
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outside the vacuum system. RBS has some difficulties measuring light elements in a matrix 

of heavy atoms; other ion scattering or nuclear methods can be employed in these cases.13 

Sample heterogeneity and sampling concerns are also issues for methods where the signal 

arises only from discrete spatial locations. 

In standard dissolution procedures for elemental analysis of solids, the sample is 

usually dissolved completely. The total amount of sample is determined simply from the 

sample mass. The objective of the present study is to evaluate ICP-MS for quantitative 

elemental analysis of dissolved layers from solids, rather than the entire material. The 

amount of sample dissolved is determined from the amount of major element(s) present in 

the solution. 

Like most analytical innovations, such a capability would have potential advantages 

and disadvantages relative to other methods. The ability to calibrate response using standard 

solutions is the main potential advantage. Modern ICP-MS instruments have very high 

dynamic range, so it should be possible to measure the signal ratio of analyte element to 

matrix element for quantification. Comparison of trace element signals to those for major 

elements is often done for quantification in laser ablation ICP-MS.15 If necessary, it should 

be straightforward to determine the trace elements first in a concentrated sample, then dilute 

the sample to quantify the major elements. Spectral resolution of peaks from elements 

adjacent to the main components, e.g., Mn in steel, should not be a problem. Matrix effects 

will occur if enough solid is removed, but the calculation of ion ratios (either with internal 

standards or the major elements) should correct for them. 
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There is an extensive literature on acid decomposition,16"17 etching of metals,18 and 

other related topics. The need to handle the sample cleanly without contamination and to 

remove the various constituents uniformly are also obvious issues to be addressed. 

One type of controlled dissolution followed by ICP-MS is already used widely in a 

key application: vapor phase decomposition (VPD) for determination of atomic impurities in 

silicon oxide layers in semiconductor production.19"22 The solid is etched in an HF 

atmosphere. Contaminants are collected by "rolling" a small drop of water or aqueous acid 

(~ 200 to 500 |iL) around the surface of the solid. The new low flow micronebulizers are 

well suited to analysis of the resulting single drop. The sampled depth can be as small as a 

few hundred atomic layers. 

These VPD measurements are facilitated by two fortunate characteristics. First, the 

solid surface is hydrophobic. The single droplet remains as one bead as it is rolled around, so 

contaminants can be collected in a very small drop with little dilution. Second, most of the 

etched silicon is often removed as gaseous SiF^ during a subsequent evaporation step. The 

resulting droplet does not have an exorbitant concentration of silicon matrix. 

One hypothesis of the present work is that similar measurements can be done on other 

solids where the matrix remains in solution. This paper is meant to be an initial evaluation of 

this concept. It is more of a description of an experimental protocol to evaluate the 

feasibility of this concept rather than a final, definitive demonstration. It should be noted that 

these types of measurements with dissolved layers will not provide lateral resolution; LA-

ICP-MS, SIMS and RBS remain the methods of choice for elemental analysis with both 

lateral and depth resolution. 
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Becker and co-workers23 describe experiments that are also related to the present 

work. They dissolve thin layers of perovskite for elemental analysis by ICP-MS. One key 

difference from our experiment is that they dissolve the layers fully, whereas we seek ways 

to regulate the amount dissolved. We both exploit the high sensitivity and selectivity 

provided by magnetic sector mass spectrometers for these measurements. Other established 

sample preparation methods related to the present work include microwave extraction for 

"soft" dissolution of intact elemental species24 and selective leaching procedures in 

geochemistry.25 

EXPERIMENTAL 

Dissolution Procedure for Steel Disks. The device used for partial dissolution is 

shown in Figure 1. The sample is a steel standard reference material (1167, low alloy steel, 

NIST). The goal is to compare measured and certified concentrations, and the same sample 

is etched and analyzed repeatedly. Therefore, a fresh sample surface is prepared by polishing 

the steel with various grades of emery paper (100 to 600 grit) and a Kimwipe, washing with 

deionized water, and drying. A Teflon O-ring (16 mm ID) is held tightly to the flat surface 

of the steel sample with two clamps. The etching acid (100 |xL) is added evenly inside the 

Teflon O-ring. The system is covered in an empty dessicator and allowed to stand for 10 

minutes at room temperature. The surface is then washed with one of three solvents 

(described below), and the wash is collected and diluted to 50 mL with the same solvent. 

The resulting solution was often diluted further by a factor of 100 before analysis. 

All sample handling procedures were carried out in a clean room (Class 100, 

Microvoid Air Control), which greatly reduced the incidence of contaminated specimens. 
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Sample bottles were cleaned by acid washing in a solution of 7% HNO3, 5% H2O2 and 6% 

HF for at least 24 hours prior to use. 

Reagents. Fuming nitric acid (~ 70%) and concentrated hydrofluoric acid (~ 49%) 

were purchased from J. T. Baker and used without further purification. For the initial etching 

step, the fuming nitric acid was diluted with deionized water (18 Mfl, Barnstead Nanopure 

II, Newton MA) to concentrations of 5% to 50%. In some experiments, HF at 5% was also 

added to the nitric acid solutions. For dilution of the resulting mixture of etch acid + 

dissolved elements, three solvents were evaluated: deionized water, 1% nitric acid in 

deionized water, and 1% nitric acid + 0.5% hydrofluoric acid in deionized water. These acid 

mixtures were made fresh daily. 

ICP-MS Measurements. A Finnigan Element 1 magnetic sector instrument26"28 was 

used in medium resolution (m/Am = 4000) for all elements. A platinum torch injector and 

platinum sampler and skimmer cones were used because of the HF in the samples. ICP 

operating conditions and sampling position were selected to maximize analyte ion signals for 

Li+, In+ and U+ at a forward power of 1.2 kW. 

Most measurements were done by solution nebulization using a Teflon 

microconcentric nebulizer (ES-20100, Elemental Scientific, Inc.) with natural uptake at -100 

I^L/min. The nebulizer was operated in a small, Teflon, Scott-type double pass spray 

chamber at room temperature. It was rinsed briefly between samples with a small dose of 

2% HF followed by the blank solution. In our experience, the HF rinse helps prevent loss of 

uptake by the nebulizer. Prompt removal of the sample uptake line and insertion into the 

new sample bottle also helps prevent inclusion of several air bubbles in the sample tube, 

which can also stop natural uptake. 
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The most abundant isotope of each element, including 56Fe+, was monitored. The 

mass spectrometer was operated under electrostatic scanning conditions (mass window 

175%, 40 samples per peak, 50 runs per sample, sample time 0.03 s, settling time 0.001 s). 

During these "E scans" the magnetic field was varied to values appropriate for each isotope 

monitored. Sensitivity was calibrated with external standard solutions that were prepared 

volumetrically. These calibrations included measurement of the major element Fe. The 

mass of sample removed was determined from the amount of Fe in the solutions. Blank 

count rates were subtracted from the gross signals from the sample. 

Laser ablation measurements were done by line scans across the sample using a 

commercial system (LSX-100, CET AC Technologies, 266 nm, 1.5 mJ/pulse, spot diam. -75 

gm, repetition rate 10 Hz). SEM measurements (JSM-5910, JEOL Electron Optics, Tokyo, 

accelerating voltage 15 kV, specimen current - 0.08 nA) were also done on one of the etched 

samples. 

RESULTS AND DISCUSSION 

Effect of Composition of Etching Acid and Solvent on Dissolution of Steel. The 

first acid added inside the O-ring (Figure 1) attacks the sample surface and is called the etch 

acid. One set of experiments involves determining whether the removal rate could be 

manipulated by varying the composition of the etch acid. For the results presented below, 

this etch acid was 5% aqueous HF with various concentrations of aqueous HNO3 between 5 

and 50%. 

Figures 2 and 3 show the dissolved amounts of the major element Fe and other 

elements for the various etch acids when three different aqueous solvents were used to 
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remove the dissolved elements and dilute the samples. These solvents were deionized water, 

1% HNO3 and 1% HNO3 + 0.5% HF. Note that the etch acids were diluted greatly by the 

solvents, so the concentration of etch acid should not affect the sensitivity of the ICP-MS 

device for analyte ions. 

For sake of discussion we call these plots dissolution curves. First we describe 

dissolution curves for Fe, Mn and A1 (Figure 2). For these elements, the plots of mass 

dissolved vs. nitric acid concentration in etch solution are roughly linear. Addition of HF to 

the solvent displaces the lines upward. We believe the HF in the solvent promotes better 

retention in solution of material that was dissolved in the prior etching step. The HF additive 

to the solvent does not greatly affect the slopes of the lines. 

For Ti and W (Figure 3a and b) the mass dissolved increases nonlinearly with nitric 

acid concentration unless HF is present in the solvent. For the refractory elements Nb and Ta 

(Figure 3c and d) the curves have two distinct regions of different slope. Without HF, little 

Nb or Ta is removed unless the HNO3 concentration exceeds 25%. Use of HF in the solvent 

mitigates the problem for Nb and Ta but does not eliminate it. 

It is our hypothesis that the shapes of these curves provide information about the 

removal rate of the analytes. Elements like Mn, whose dissolution curve has the same shape 

as that of the matrix (Fe in this case), are probably removed along with the matrix. The 

concentration ratio of trace element to major element in the resulting solution should 

resemble that in the solid sample. Addition of HF to the solvent causes the same, twofold 

signal increase for Fe, Mn and Al. Elements like Ta whose dissolution curve has a different 

shape than that of the major element may be removed to a different (probably lower) extent. 

This hypothesis is evaluated in the next sections. 
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Comparison of Measured and Certified Concentrations. These results are 

measured using the most effective solvent, 1% HNO3 + 0.5% HF. For the well-behaved 

elements Mn, A1 and W (Figure 4) the plots of measured elemental concentration vs. etch 

acid concentration are flat lines close to the certified concentrations. There are several high 

results in these curves that are attributed to occasional contamination of a particular sample. 

An example to be remembered for future discussion is the measurement for A1 at 10% HNO3, 

labeled with an asterisk in Figure 4b. Without HF in the solvent the measured concentrations 

for W were well below those expected (data not shown). Retention of W in solution 

commonly requires HF to form WF„ complexes.10 

Measured concentrations for Ti, Nb, and Ta (Figure 5) are generally below the 

expected values. These elements are normally considered difficult to dissolve and to keep in 

solution. For Nb and Ta these low concentration values are consistent with the dissolution 

curves (Figure 3b and c), which are decidedly nonlinear. The dissolution curve for Ti is 

moderately so. 

Note that the Ti result at 10% HNO3 is too high in Figure 5a. This was the same 

solution as that which yielded the high result for A1 (Figure 4b). Both Ti and A1 are common 

constituents of dust, so it appears that this sample was contaminated in this fashion, even 

though these samples were handled in a clean room. Early dissolution experiments that were 

not done in clean room were plagued by such problems. 

Estimate of Depth of Sample Removed. The depth of the layer removed from the 

steel sample is estimated as follows. The minimum amount of Fe removed for the lowest 

acid concentration in Figure 2a is approximately 5.8 mg. Using the density of the steel 

sample, the volume of solid removed is 0.74 mm3. The cross sectional area inside the Teflon 
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O-ring (Figure 1) is 200 mm3, so the average depth removed is — 4 pm. This value 

corresponds to approximately 20,000 layers of Fe atoms. From the intercept in Figure 2a, 

use of HF with 5% HNO3 removes about 60,000 atomic layers, and the more concentrated 

acids remove still more Fe. 

Laser Ablation ICP-MS and SEM Measurements. Discussions with metallurgists 

indicated that the problem elements like Ti, Nb and Ta are probably not distributed 

homogeneously throughout the steel samples. Instead, these elements are expected to be 

localized together in refractory grains such as carbides. To evaluate this explanation, laser 

ablation ICP-MS was used to examine the spatial homogeneity of the sample. Simple line 

scans show that a well-behaved element like Mn is distributed uniformly (Figure 6a), 

whereas the problem elements Ti, Nb and Ta are not (Figure 6b). Many of the signal spikes 

for these latter three elements are observed at the same time, which indicates they occur 

together in the sample. Even though the laser spot size (75 |am) is much larger than the 

probable size of the grains, the basic observations that these elements are distributed 

heterogeneously and that they tend to occur together in discrete spatial locations is still valid. 

SEM was also used to examine the morphology of the etched samples. Figure 7 

shows an image from a sample that was etched with 30% HNO3 + 5% HF. The unetched 

surface is on the left with the etched surface to the right. The etching process has eroded the 

Fe and left discrete grains behind. X-ray spectra were measured from many such grains and 

the nearby, underlying dark areas. Typical spectra are shown for the four locations in Figure 

8. Grains 1 and 2 appear light in Figure 7 because they are insulators. These grains contain 

Nb, Zr, Ti and possibly Ta, although Ta lines were difficult to distinguish from those for Si 

and Cu. In general, we did not see high levels of C in these grains. Sites 3 and 4 contain 
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little of these "difficult" elements and correspond mainly to Fe metal and iron oxide, 

respectively. 

From this information, the low results for Ti, Nb and Ta can be explained. The etch 

acid attacks the Fe layers faster than the grains. Residues of the grains remain behind as the 

etch acid proceeds down into the sample. Elements that are present as atoms located mainly 

in the Fe are removed to the same extent as the Fe, so the signal ratio of that element to the 

Fe+ signal reflects the overall composition of the solid. Elements located mainly in the grains 

dissolve more slowly than the Fe layers, so their measured concentrations are too low. Even 

if the total amount dissolved is larger than the recommended sample size, elements in the 

grains are underrepresented in the solution if the grains don't go into solution at the same rate 

as the surrounding iron atoms. In conventional dissolution, where the entire solid is brought 

into solution, such grains often persist until the final stages of the procedure and do not go 

into solution until the temperature is maximum. 
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CONCLUSIONS 

For a complex matrix like steel, the low results for the problem elements in Figure 5 

do indicate a problem for the original objective of this work, quantitative multielemental 

analysis of layers of solids. However, it is interesting to note that this partial dissolution 

procedure also provides information about the speciation of the elements in the solid, which 

may have other practical applications. It would also be valuable to evaluate whether heating 

the solid sample or some of the new microwave extraction procedures, like those used for 

"soft" extraction of intact compounds from solids,16 would make the dissolution rate more 

uniform yet still slow enough for depth resolution for the problem elements found in this 

study. 
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SAFETY NOTE 

The acids used in these procedures are potentially dangerous. Hydrofluoric acid 

especially must not be used without proper training and protection, including an HF-specific 

spill kit and salve. 
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5% HF + 5 to 50% HN03 , 100 (xL, 10 min 
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O-RING 
16 mm ID 

WASH W. 1% HN03 + 0.5% HF 
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Figure 1. Side view of controlled dissolution apparatus for the steel 
disk sample. 

M 50 

% HNO3 in Etch Acid 

Figure 2a, b and c. Dissolution curves for Fe, Mn, and A1 in steel using 
etch acids of various HNO3 concentrations with three solvents. Each 
etch acid also contained 5% HF. 
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Figure 3 a, b, c and d. Dissolution curves for W, Ti, Nb and Tain steel using various 
etch acids and solvents. Note the two separate regions with different slopes, especially 
for Ta. HF in the solvent makes the curve for W linear and puts more Nb and Ta into 
solution at low HNO3 concentrations. 



www.manaraa.com

44 

M 
S 

£ 
% 
M 
% 

140 

120 

100 

80 

60 

40 

20 

0 

0 

1% HN03+0.5%HF 

1% HNCh 

3c 

10 20 30 40 

% HN03 in Etch Acid 

50 

100 

g 80 

S 
% 60 

H 
% 40 
a 

S 20 

0 

0 

1% HNO3+ 0.5% HF 

l%HNO, 

P~-—&-

3d 

DIW 

10 20 30 40 50 
% HNO3 in Etch Acid 



www.manaraa.com

45 

0.4 

0.35 

| 0.3 
£ 
£ 0.25 
> 

0.2 

0.15 

4a 

• Certified Mn% 

• Exp. Mn% 

0 10 20 30 40 50 

% HNOs in Etch Acid 

Figure 4a, b and c. Comparison of measured and certified 
concentrations for "well-behaved" elements Mn, A1 and W in steel at 
various concentrations of HNO3 etch acid. The solvent is 1% HNO3 + 
0.5% HF. 
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Figure 5a, b and c. Comparison of measured and certified concentrations 
for "problem" elements Ti, Nb and Tain steel at various concentrations 
of HN03 etch acid. The solvent is 1% HN03 + 0.5% HF. 
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Figure 6a and b. Laser ablation ICP-MS measurements for well-behaved 
element Mn (6a) and problem elements as Nb, Ta and Ti (6b). 



www.manaraa.com

50 

Unetched 

1 7 500 1 0Mrr 

Figure 7A and B. SEM images of etched steel sample. A) The unetched area is 
shown at the left, with the edge of the etched area on the right. Note the grains 
remaining in the etched area. B. Magnified image showing four areas analyzed 
subsequently: small grain (1), large grain (2), flake (3) and iron floor (4). The 
areas analyzed are roughly equal to the sizes of the circles shown. 
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Figure 7. 

X-ray spectra from localized sections identified by numbers in 
Lines for certain elements were highlighted by the SEM software. 
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CHAPTER 3 

The BEHAVIOR OF BACTERIA IN THE ICP 

A paper to be submitted to Analytical Chemistry 

Fumin Li, Daniel W. Armstrong and R. S. Houk 

ABSTRACT 

The combination of perfusion chromatography (PC) and inductively coupled plasma 

mass spectrometry (ICP-MS) is found to be a general and fast way to monitor metal 

incorporation in bacteria during bioremediation. Two questions involving this approach must 

be addressed: how can it be used to accurately determine the amount of uranium removed by 

bacteria, and how can the sensitivity be calibrated with an inorganic U standard solution? 

The behavior of B. subtilis in the ICP is investigated by monitoring the time-resolved signals 

of U, which is incorporated intrinsically in the cells. When U+ signals from samples 

containing intact B. subtilis are measured directly by ICP-MS, occasional U+ spikes are 

observed. The positive U+ spikes suggest that bacteria behave like large particles in the ICP. 

The fact that desolvation of the bacteria aerosol does not eliminate the spikes implies that 

they are not due to solvation or a wet aerosol. The effect of sonication on the U+ signals is 

investigated. Sonication of bacteria, i.e. B. subtilis, for 5 minutes increases the U+ response 

by 30% compared to the untreated sample. Further increase in the sonication time does not 

further enhance the U+ signal. The chromatographic results from the PC of a 10 ppb U 
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standard, partially lysed and fully lysed bacteria samples show that the intracellular U-bound 

species is released by sonication and is small in size because its retention time is similar to 

that of the inorganic U standards. Finally, other aspects of introducing intact bacteria into the 

ICP are of analytical interest. The retention of intact bacteria on the PEEK tubing is also 

investigated by flow injection analysis (FIA). 

INTRODUCTION 

Inductively coupled plasma mass spectrometry (ICP-MS) has been widely used for 

accurate trace and ultra-trace elemental quantification in the semiconductor industry,1 and for 

biological2 and environmental samples.2"3 The measured signal from the unknown is 

compared with that of a standard containing a known amount of the analyte element or 

isotope. Different forms of the analyte are assumed to give the same sensitivity.4 However, 

this assumption may not be accurate for trace elements involved with complex biological 

systems, e.g. cells and tissues. These elements may not behave the same way as the 

inorganic standards in the ICP. For simplicity, the ionization behavior of the analyte in the 

ICP hereafter refers to the whole process of vaporization, atomization and ionization (or 

VAI). 

Strategies using trace metals in intact cells from cultures have gained popularity in 

areas such as proteomics,5 toxicology6 and various biological processes7 to understand the 

role of minor or trace elements. Both the amounts of these trace elements10 and the metal 

speciation,8"9 i.e. oxidation state, chemical ligand association and complex forms, are 

important to understand toxicological behavior. The methods used to quantify trace elements 
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in cells or tissues often involve digestion in the first step, such as acid digestion,10"12 followed 

by analytical measurements. The quantification is then carried out by using inorganic metal 

standards. Kasia et al.12 investigated the aluminum binding in Al(III)-treated neuroblastoma 

cells with various hyphenated techniques, including SEC-ICP-MS, CE-ICP-MS and LC/ESI-

MS. The cells were lysed and the supernatant was analyzed. 

In a previous paper,13 we coupled PC14"15 separation with ICP-MS,16"17 as a fast, 

general method to monitor the incorporation of heavy metals, namely uranium, during 

bioremediation by bacteria. Two questions that remain are: how much uranium has been 

removed by bacteria, and can the U sensitivity be calibrated with an inorganic U standard 

solution? If the answer is yes in the latter case, one assumption is that the VAI of uranium 

from a reference aqueous standard is the same as or at least similar to that of uranium, 

incorporated in the bacteria, whether it is extracellular or intracellular. This may not be the 

case because bacteria are much larger particles, 0.5 - 4 |^m in diameter, compared to the 

particulates arising from fine aerosols from aqueous solutions, which will be discussed in 

detail later. In other words, the ionization efficiency or the behavior of bacteria in the ICP 

affects the U+ sensitivity, which in turn can cause inaccurate quantification. 

There have been several efforts to measure analytical signals from intact bacteria in 

the ICPs. Kawaguchi et al.18"20 developed an individual particle analyzer, using ICP atomic 

emission spectroscopy (AES), to determine the elemental content in individual airborne 

particles. They measured the pulse height distribution of fast transient signals emitted from 

the ICP. A related method was used to measure the calcium content in individual biological 

cells continuously in real time.21 This method was based on the detection of the emission of 

a calcium ion line, Ca(II), at 393.4 nm. The cell samples were dissolved in 70% aqueous 
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according to their study. The organic solvent, however, did puncture the cell membranes as 

can be seen from the Ca emission signal profile from mouse fibroblast cells. The small 

random spikes in the background were probably partially due to the emission of free calcium, 

released from holes, penetrated by organic solvent, in the cell membranes. The calcium 

content in biological cells was then quantified by using an inorganic calcium acetate, 

assuming that an equal amount of calcium in cells and the inorganic standard generated the 

same pulse heights. 

Despite promise as an analytical method, it could not be completely adapted to our 

current research for the following reasons. Firstly, the sample in their study was in organic 

solvent, whereas ours are in saline buffer, vital to keep bacteria intact. The incorporated 

uranium may otherwise leach out if bacteria are kept in organic solvent. Secondly and more 

importantly, using an inorganic calcium standard to calibrate the calcium content in 

biological cells may not be accurate. Furthermore, it is impractical, if not impossible, to find 

bacterial standards with known amount of trace elements as calibrants. In the current study, 

we try to investigate the calibration in detail. Sonication is utilized to lyse the bacteria and 

the lysates are immediately analyzed by ICP-MS to study its effect on U+ signals from intact 

cells. 

The ionization behavior of analytes in the ICP is of fundamental importance, 

especially for quantification. ICP-MS has been used to quantify inorganic metals in various 

biomolecules such as DNA,22 proteins,23 peptides,24 carbohydrates25 and lipids.26 Usually the 

calibration procedure assumes that metals in these molecules and inorganic metal standards 

undergo comparable ionization in the ICP. Nevertheless, we know of few reports of using 
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ICP-MS for intact bacteria for the same purpose. Little information is available about the 

ionization of bacteria within the ICP. There are some high-speed photographic studies of the 

ionization process for large particles in an ICP. Houk et al.27 studied the ionization of wet 

Yttrium droplets and solid particles in the ICP by motion pictures taken at 4000 frames s"1. 

They found that medium-sized wet droplets passed through the ICP intact or poorly 

dissociated. A more recent work by Aeschliman et al.28 examined the validity of a solution 

calibration procedure for LA-ICP-MS. They clearly showed in video that some large 

particles produced by laser ablation can fly through the plasma intact. 

Olesik29 reviewed the fate of individual sample droplets in the ICP. Nomizu et al.30 

used ICP-MS, with high-speed digital signal processing, to determine the amount of zinc in 

individual sub-micron airborne particles. The system was able to resolve signal pulses 20 |is 

apart, thus has the potential to study the ionization process of each particle in the ICP. 

Do bacteria have the analogous fate as these large particles in the plasma? In the 

present work, we use B. subtilis, grown in spiked uranium medium, as a model bacterium to 

study the behavior of bacteria in the ICP. Results from the previous study13 show that the U 

is mostly incorporated intrinsically in B. subtilis after careful washing. Therefore, the time-

resolved U+ signals should be able to reflect the ionization of the bacteria in the ICP. In 

addition, other aspects of introducing intact bacteria into the ICP are of analytical interest. 

The interaction of the PEEK tubing with intact bacteria is also investigated by flow injection 

analysis (FIA). 
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EXPERIMENTAL SECTION 

Chemicals and Materials. EDTA was obtained from Fisher Scientific (Fairlawn, 

NJ). Deionized water (18 MQ cm"1, 25 °C) was produced by a Nanopure II system 

(Barnstead, Newton, MA). The bacterial nutrient broth was prepared from DIFCO 234000 

concentrate (Becton Dickinson, Sparks, MO). All other chemicals were from Sigma Aldrich 

(St. Louis, MO). Uranium stock solution (640 ppm) was prepared from a 1000 ppm ICP 

standard (Plasmachem Associates, Bradley Beach, NJ). Sodium citrate was added at 0.5 g 

mL 1 and the pH was adjusted to 7.0 with 1 M NaOH. 

Bacteria Growth and Counting. The culture medium was prepared by dissolving 

8 g DIFCO nutrient broth powder in 1 L deionized water. The culture medium was 

autoclaved at 121 °C and stored at 5 °C. B. subtilis was inoculated into the medium in an 

autoclaved 250-mL Erlenmeyer flask. Uranium was added at a final concentration about 14 

ppm. The flask was covered with aluminum foil and placed in a shaker (Model G24, New 

Brunswick Scientific, Edison, NJ) at 37 °C. The total incubation time was 48 hours with the 

presence of uranium. Bacterial samples were harvested during the log growth phase13 and 

centrifuged at 7000 rpm (Model 228, Fisher Scientific). Cell pellets were washed three times 

and re-suspended with 0.17% aqueous NaCl prior to ICP-MS analysis. When necessary, 

bacteria were counted by flow cytometry (Model Epics XL-MCL, 488 nm; Beckman Coulter, 

Fullerton, CA). 

Flow Injection Setup and Sonication Device. The flow injection system consisted 

of a high-pressure Teflon manual injection valve (9010, Rheodyne, Supelco, Bellefonte, PA) 

and a 100 pL PEEK injection loop (Alltech, Deerfield, IL). The sonication probe was 
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operated in continuous mode at 5 W for various periods of time. The bacterial samples were 

bathed in ice water at 0 °C to dissipate the heat generated during sonication. In some 

experiments, microbes were separated from molecules by the PC system described 

previously.13 

Desolvator. When desolvation was applied, the aerosol was dried by a desolvator, 

modified from an ultrasonic nebulizer (U-5000AT, CET AC Technologies, Omaha, NE). The 

transducer was removed and the micro-concentric nebulizer was adapted to the inlet by 

threading it into the center of a rubber stopper, which sealed the chamber. The bacterial 

aerosol was first heated (140 °C) and then cooled (3 °C). 

ICP-MS and Sample Introduction. The ICP-MS device is a magnetic sector 

instrument (Element 1, Thermo Finnigan, Bremen, Germany). Generally, 238U+ is monitored 

in low resolution (m/Am ~ 300), sufficient to resolve it from possible interferences. One 

benefit of low resolution is high sensitivity because of the large slit widths. The ionization 

behavior of bacteria is investigated by changing two key parameters of the ICP-MS, i.e. 

sampling position and acquisition speed. Herein sampling position is defined as the distance 

between the sampling cone and initial radiation zone (IRZ) for clarity. The sampling 

position of the plasma is altered by changing the aerosol gas flow rate. Acquisition speed, 

manipulated by changing acquisition parameters such as samples per peak and magnet 

settling time, is varied to achieve different time-resolved U+ signals to elucidate the behavior 

of bacteria in the ICP. When measured, 24Mg+ and 44Ca+ are monitored in medium resolution 

(m/Am ~ 4000). 

The ICP operating conditions and ion optical voltages are optimized to maximize 

signal for 7Li+, 115In+ and 238U+ during tuning and calibration of the mass range at 1150 W. 
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The samples are usually introduced and nebulized by a micro-concentric nebulizer (Model 

20100, Elemental Scientific, Inc., Omaha, NE). The actual uptake rate is ca. 200 fiL/min 

unless otherwise mentioned. The nebulizer operates by natural uptake without clogging or 

loss of aspiration throughout the study. For perfusion chromatography and flow injection 

(FIA) studies, the flow is delivered by the HPLC pump described earlier. 

RESULTS AND DISCUSSION 

Effect of Lysing Bacteria on U+ Signal. Sonication is utilized to lyse B. subtilis. 

One B. subtilis sample is divided into 5 aliquots, each with the same cell contents. The 

aliquots are then sonicated for various time periods ranging from 0 to 20 minutes. The 

samples are nebulized directly without separation by the perfusion column. 

Figure 1 shows the normalized signals for 24Mg+, 44Ca+ and 238U+ as sonication time 

changes. The normalized intensities for these three elements increase substantially as the 

sample is sonicated for up to 5 minutes. Previous PC studies show that only a small portion 

of Mg and Ca are from B. subtilis, while most of the U is attached to bacteria.13 The fact that 

Mg and Ca signals have similar trends as that of the bacteria-incorporated U may be 

explained by slurry nebulization effect,31 in which the free Ca and Mg are present in the 

bacterial slurry aerosol. The similar signal increase for the three elements suggests that the 

ionization efficiency of these elements is higher from sonicated samples than from intact 

bacterial sample. The normalized signals reach a plateau after 5 minutes. Further increase in 

sonication time does not generate more M+ signals, which implies that 5 minutes of 

sonication is enough to maximize elemental responses from B. subtilis samples from ICP-MS 

measurements. 
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A close look at Figure 1 reveals that the normalized U+ signal for untreated bacteria, 

69%, is slightly lower compared to that for Mg+ and Ca+, 78% and 75% respectively. The 

important message is that a different correction coefficient can be obtained for each element 

and for each microorganism. For instance, a correction factor of roughly 1.43 applied to the 

sensitivity of U+, measured directly from intact B. subtilis, will give a comparable sensitivity 

as that obtained from a lysed sample. Interestingly, the sensitivity differences are not very 

large. Therefore, it is possible to do fairly accurate quantification in intact bacteria using 

inorganic standards, provided that the correction coefficient is known beforehand. 

Effect of Sonication on the Retention of Bacteria on Perfusion Column. The 

previous study13 shows most of the U is on intact bacteria. It is reasonable that the ionization 

efficiency of the uranium from intact bacteria is different from an aqueous inorganic U 

standard because of the large difference in sizes between the two analytes. In the present 

study, bacteria are lysed to study the their ionization in the ICP. After lysing cellular 

components, some of which bind uranium, are expected to be released in free solution. 

Whether it is with macromolecules, i.e. DNA or proteins, or small molecules, i.e. peptides or 

lipids, uranium in this case should be small in size and is expected to have similar ionization 

efficiency as the aqueous inorganic uranium in the ICP. 

According to the previous experimental results (Figure 1), sonication for 5 minutes is 

enough to generate maximum U+ signal, if not fully lysing B. subtilis. Therefore, sonication 

times of 2 and 10 minutes were chosen for two B. subtilis aliquots. The resultant solutions 

were termed partially and fully lysed bacterial samples, respectively. Figure 2 shows the 

chromatograms for the 10 ppb U standard solution in 0.17% NaCl and the partially lysed and 

fully lysed B. subtilis samples. 
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Obviously for the 10 ppb U standard solution, there is just one peak at ~ 480 s, as can 

be seen from the chromatogram. In comparison, the chromatogram for the partially lysed 

bacterial sample has two peaks. The first one at ~ 200 s corresponds to the elution time of 

intact bacteria.13 The second peak at ~ 480 can be attributed to free uranium in solution, a U 

complex or small U inorganic ions. This is almost at the same elution time as for the 10 ppb 

U standard sample. The results suggest that U-incorporated components are released from 

bacteria by sonication and they are small in size because they have similar retention time to 

the inorganic U standard. In other words, the perfusion column is not able to resolve them 

based on their sizes. 

Also shown in Figure 2 is the chromatogram of a fully lysed B. subtilis sample. 

Clearly the U+ peak corresponding to the intact bacteria is almost gone while the relative 

intensity for the second peak is increased compared to that from the partially lysed bacterial 

sample. This demonstrates that the U-bound species are indeed small in size since they are 

totally retained by the perfusion column. As for the small peak at 200 s, there may be some 

intact B. subtilis left in the sample or the bacterial debris that are large in size so they show 

the same retention pattern in perfusion chromatography as intact bacteria. It is worth noting 

that there is a tailing peak after 600 s, which is probably caused by the light absorption of U-

bound species on the packing materials. The amount of U measured from the partially lysed 

B. subtilis sample agrees quantitatively to that from the fully lysed one. 

Based on the above results, it is reasonable to say that these U-bound compounds, 

released from bacteria by sonication, would have similar ionization efficiency as the 

inorganic U standard in the ICP. A correction factor can be applied to correct the sensitivity 

discrepancies due to the ionization differences between U in intact bacteria and the inorganic 
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uranium standard in the ICP. Therefore, it should be possible to quantify the amount of U 

removed during bioremediation by using an inorganic U standard instead of a bacterial 

standard with known amount of U. 

Behavior of B. subtilis in the ICP. It is interesting that the U+ signals are observed 

at all from intact bacteria, as confirmed by UV and polarimetry results.13 The bacteria in the 

effluent are intact in the saline mobile phase before entering the nebulizer. These intact 

bacteria can survive through the sample introduction processes, including chromatography, 

nebulization and desolvation, prior to the ICP, where they undergo desolvation, vaporization, 

atomization and ionization. 

1. Effect of Acquisition Speed. 1). Dwelling time: 100 ms. The atomization and 

ionization behavior of B. subtilis in the ICP is at least partially reflected by the time-resolved 

U+ signals since majority of the U is in bacteria. Figure 3 shows the U+ signals (in log scale) 

for three different samples under slow acquisition conditions, which are listed in Table 1. As 

can be seen from Figure 3, the U+ signals are less stable with frequent positive spikes for the 

two bacterial samples, 108 and 109 cells/mL. The positive spikes are probably due to the fact 

that one or a few cells survive the ICP, and happen to atomize at the right place before the 

sampler of the mass spectrometer. Thus, a stream of U+ is released to generate a positive U+ 

spike. In comparison, the U+ signal from the 10 ppb standard is more stable, which is likely 

due to the uniform ionization efficiency of the fine aerosol produced from an aqueous U 

solution. 

2). Dwell time: 3 ms. Very rapid measurements are necessary to study the ionization 

and ion-sampling processes in the ICP. Although the aforementioned results do show, to 

some extent, the behavior of bacteria in the ICP, the acquisition time of ca. 300 ms per data 
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point is much longer compared to the typical lifetime of a droplet in the ICP, 2-3 ms. 

Therefore the sampling time is further pushed to the limit, mainly by reducing the magnet 

settling time from 100 ms to 1 ms. The operation parameters are listed in Table 2. The time 

to generate each data point is 4 ms, which is about the fastest achievable sampling from the 

sector instrument used (Element 1) and comparable to the lifetime of droplets in the ICP. 

Figure 4 shows the U+ signals from the 10 ppb U standard solution and an intact B. 

subtilis sample (~ 108 cells/mL). As expected, the U+ signals for both samples are very noisy 

because of fast acquisition in which the signals are not averaged. Clearly there are some 

positive spikes superimposed on the bulk U+ signal from B. subtilis sample, while there are 

no such spikes in the aqueous U solution. The experiments are repeated many times and 

similar results are obtained consistently. These results further support the previous 

hypothesis that the U+ spikes are due to the passage of intact B. subtilis bacteria through the 

ICP. The aqueous U solution produces a fine uniform aerosol, which does not generate 

positive signal spikes although some low amplitude negative spikes are observed. 

The effects of dry aerosol versus wet droplets are also of interest. A desolvator is 

utilized to dry the bacterial aerosol. The ICP-MS is re-optimized each time by changing the 

aerosol gas flow rate to maximize U+ signal when the desolvation device is turned on and off. 

Change of nebulizer gas flow rate of only ~ 0.1 L/min is necessary. Note that when the 

desolvator is off, the aerosols still pass though it at room temperature, without being heated 

or cooled. Figure 5a and 5b are the U+ signals from the 10 ppb U standard solution when the 

desolvator is on and off. The U+ signals do not show any appreciable positive spikes above 

the bulk U+ signals in both situations. The U+ signals obtained, however, are much noisier 

with lots of negative spikes when the aerosol is dried. 
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Figure 6a and 6b are the U+ signals from the intact B. subtilis sample (~ 108 cells/mL) 

when the desolvator is switched on and off. Positive U+ spikes are observed for both wet and 

dry bacterial aerosols. These results strongly suggest that the positive U+ spikes are due to 

intact bacteria rather than a solvation effect because the desolvator should remove the 

solvent. As in the case of the standard U solution, the U+ signal is noisier with the desolvator 

on than off. The exact cause for this phenomenon is not clear. Perhaps the desolvation 

process strips the solvent and thus exposes the charged solute to atmosphere, which leads to 

the deposition of electrically- charged bacteria on the wall of the desolvator. As a result, 

more negative peaks are shown in the U+ signal due to the erratic solute losses. Figure 7a and 

7b are the expansions of the designated a* and b* areas in Figure 6a. The results indicate 

that the instrument, operated under the specified conditions, is able to resolve counts that 

differ by ~ 10 ms although the actual dwell time is believed to be 3 ms. 

2. Effect of Aerosol Gas Flow Rate. There is no doubt that the sampling position (as 

defined earlier) of the ICP will affect the measured signal. The longer the distance along the 

axis downstream from initial radiation zone (IRZ)32, the lower the sensitivity for the analyte 

because the ion plume expands.4 The optimal sampling position for ICP-MS would be only 

slightly downstream from the typical sampling position, or about 1-2 mm from the sampling 

cone. This is to ensure the highest possible ion density in the extracted gas.4 Remember that 

this is for a fine aerosol of small molecules/particles produced from aqueous solution, where 

the residence time of the aerosol in the ICP is sufficient for VAI. In the case of bacteria, the 

same residence time in the ICP would probably not generate the same degree of ionization, as 

indicated by the positive spikes in Figure 3. If the observed positive U+ spikes are really due 
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to incomplete ionization of intact bacteria in the ICP, the spike effect can be attenuated by 

changing the sampling position. 

Shown in Figure 8 is the relationship of normalized U+ signals with sonication time 

using two aerosol gas flow rates, 1.23 L min"1 that maximizes U+ signal from a 10 ppb U 

standard, and 1.13 L min"1. One thing in common is that the U+ signals reach a steady state 

after sonication for 5-10 minutes. The normalized U+ signal from the unsonicated sample is 

about 85% of the maximum attainable U+ signal in the scenario of less aerosol gas flow, 

whereas the U+ signal is approximately 70% of maximum at the optimized sample gas flow 

rate. 

These results show that the U ionization efficiency from intact bacteria is -15% 

higher at lower aerosol gas flow rate than at optimal one. This can be attributed to the 

change of sampling position, which moves further from the IRZ at lower nebulizer gas flow 

rate. Bacteria would thus have more time to completely ionize in the plasma. Nevertheless, 

this higher ionization efficiency occurs at the expense of U+ sensitivity (~ 4 times lower at 

lower aerosol gas flow rate) simply because the lost intensity at non-optimal sampling 

position exceeds the signal gained due to higher ionization efficiency. Note that different 

batches of bacteria, grown 2 weeks apart, give similar trend in normalized signal vs. 

sonication time as far as the ICP is operated at optimal aerosol gas flow rate. 

Retention Behavior of Intact Bacteria on the PEEK Tubing. During the project, 

flow injection analysis (FIA) is utilized to mimic the behavior of bacteria in the self-packed 

perfusion column. The injection loop is a 100 |xL PEEK loop. The flow is maintained at 100 

|jL/min by deionized water. After many injections of intact B. subtilis samples, sodium 

citrate (10 mM, 100 |iL) is injected to wash the loop. The U+ signal is monitored, as shown 
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in Figure 9. The U+ signal increases at ~ 60 s as the incoming sodium citrate reaches the 

ICP, which contributes partially to the rising U+ background. It is also possible that some 

free U and/or U-bound compounds, absorbed at the PEEK surface, are re-dissolved by the 

sodium citrate. 

The signal then levels off and a second broad peak appears with frequent, intense 

spikes superimposed on it. The U+ signal rises in two steps, which are attributed to two 

different effects. The spikes are probably caused by the release of whole bacteria from the 

PEEK tubing as sodium citrate passes though. The FIA peak is about 110 s wide, which is 

50 s longer than the sodium citrate liquid plug. The tailing may result from the slow release 

of U-associated species from the tubing after the passage of sodium citrate. 

More U-doped B. subtilis samples are run through the loop, which is kept unused for 

two days. Sodium citrate at 10 mM is then used to rinse the loop. U+ signal is acquired for 

three consecutive sodium citrate washes and the results are shown in Figure 10. It is clear 

that the double hump peak shape is observed for the first two washes. The U+ signal is most 

intense for the first wash and then decreases substantially for the second and third washes, 

respectively. The fact that the U+ signal from the first peak decreases with subsequent 

washes confirms that it is from free U or U-associated molecules absorbed on the surface of 

the PEEK tubing. In the third wash, the U+ signal is mostly from sodium citrate background 

since the U carryover is almost entirely washed out. Overall, the spike effect is most 

pronounced for the first wash and least marked for the third wash. 
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CONCLUSIONS 

We attempt to study the behavior of bacteria in the inductively coupled plasma, shed 

some light on its fundamental influence on the elemental quantification, and explore the 

possibility of using inorganic standards for calibration. The following conclusions can be 

drawn from this study. 

1. The time-resolved U+ signals from ICP-MS measurements indicate that bacteria 

behave similarly as the large particles in the ICP. The positive U+ spikes are not 

due to a solvation effect. 

2. Sonication releases intracellular species that are bound with uranium from the 

bacteria. 

3. The chromatographic results show that the U-bound species have almost the same 

retention as the free inorganic U standard, implying that they are small in size and 

would have similar ionization efficiency to U from an aqueous standard in the 

ICP. Therefore, quantification of U in intact bacteria is possible using an 

inorganic U standard. 

4. PEEK tubing is able to absorb intact bacteria. 
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Table 1: Parameters for slow acquisition. 

Element monitored: U at 238 (m/z) 

Magnet settling time: 300 ms 

Sampling time: 10 ms 

Samples per peak: 10 

Mass window: 100% 

Total 400 ms per data point 

Table 2: Parameters for fast acquisition. 

Element monitored: U at 238 (m/z) 

Magnet settling time: 1.0 ms 

Sampling time: 1.5 ms 

Samples per peak: 20 

Mass window: 10% 

2 sample position, 3 ms 

Total 4 ms per data point 
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CHAPTER 4 

TANDEM MASS SPECTROMETRY OF METAL NITRATE NEGATIVE 

IONS PRODUCED BY ELECTROSPRAY IONIZATION 

A paper published in Journal of the American Society for Mass Spectrometry 

Fumin Li, Matthew A. Byers and R. S. Houk 

ABSTRACT 

M(N03)X" ions are generated by electrospray ionization (ESI) of metal solutions in 

nitric acid in negative ion mode. Collision-induced reactions of these ions are monitored in a 

tandem mass spectrometer (MS) of quadrupole-octopole-quadrupole (QoQ) geometry. For 

Group 1 and 2 elements, the M(NC>3)X" ions dissociate into NO3" and neutral metal nitrate 

molecules. These elements also form some Mx(N03)x+f clusters, especially Li+. Metal 

nitrate ions from transition elements and Group 13 elements fragment into oxo products and 

also undergo internal electron transfer to leave the M atom in a lower oxidation state. To 

calibrate the collision energy, the dissociation energy of O-NO2" is found to be 5.55 eV, 

about 0.76 eV lower than a value derived from thermochemistry. The product ions from 

Fe(NC>3)4" ions have low formation thresholds of only 0.5 to 2 eV. 
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INTRODUCTION 

After the pioneering studies of Yamashita and Fenn,1 ESI-MS has revolutionized the 

analysis of biological molecules.2"5 This method also provides valuable information about 

inorganic and organometallic compounds6"8 and the interactions and binding of metal ions to 

biological molecules.9"11 The use of high mass resolution allows identification of the metal 

atom12 and even its oxidation state13 using intact metal-protein ions. 

Most studies of small inorganic ions have been done in positive ion mode.14"18 Many 

metal-solvent clusters, e.g. Mx+(H20)n, n=l to 6, are typically formed under "soft" ion 

extraction conditions.7,17,18 Highly charged metal ions tend to react with solvent molecules to 

yield hydroxy or methoxy ions when energetic collision conditions are used to remove 

solvent during ion extraction. Preserving the original form of the metal ion in positive mode 

generally requires element-specific optimization of ion extraction conditions and leads to a 

variety of ion-solvent clusters. 

Previous work from our group19 showed that an excess of nitric acid can be used to 

produce M(NOs)x" ions in negative ion mode. A single set of ion extraction conditions 

yields these ions for many elements. This early work was done with only one stage of MS. 

The present work reports collision-induced dissociation (CID) reactions of these MfNOs)*" 

ions in a triple "quadrupole" MS, actually a QoQ instrument. The properties of these ions are 

relevant in a number of areas. Nitrate is an important agricultural material and can be a 

pollutant. Nitrate and nitric acid cluster ions are also the main negative charge carriers in 

certain regions of the Earth's atmosphere.20 The related neutral compounds NO2 and NO3 and 

their acids HNO2 and HNO3 are also important atmospheric species.21 Metal nitrate 

compounds are used as explosives; Zhao and Yinon22 recently describe ESI mass spectra and 
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CID properties of complexes and clusters of alkali metals and ammonium with various 

anions, including nitrate. 

EXPERIMENTAL 

Samples and Sample Preparation 

Concentrated nitric acid is purchased from J. T. Baker and used without further 

purification. Aliquots of the concentrated acid are mixed with HPLC grade methanol and 

deionized water (18 MQ, Bamstead Nanopure) to form a solvent of 0.05% nitric acid in 25% 

water:75% methanol. Aliquots of aqueous, acidic metal stock solutions (1000 ppm, Spex 

Certipure) are diluted with solvent to the desired concentrations. 

ESI-MS 

A triple quadrupole MS (TSQ 7000, Thermo Finnigan, San Jose, CA) equipped with 

an on-axis electrospray source is used. The m/z range is 10 to 2500. Solutions are infused 

continuously with a syringe pump (5 gL/min, Model 22, Harvard Apparatus, Southnatic 

MA). Nitrogen (60 psi) and high-purity Ar are used as nebulizing gas and collision gas, 

respectively. The ESI capillary voltage is - 2.5 kV, and the heated capillary is kept at 250 °C, 

- 5 V. The ring electrode, skimmer and first octopole are at - 4.7, 0 and + 3 V, respectively. 

The pressure in the gas line into the octopole collision cell is usually 0.13 Pa but is reduced 

to 0.026 Pa for threshold measurements. The collision energies (i.e., potential offsets 

between grounded skimmer and collision cell) are 10 to 30 eV (lab frame) for normal tandem 

MS and 3 to 43 eV for single reaction mode (SRM) experiments. The resolution of the first 

mass analyzer was reduced deliberately to obtain better signals in tandem MS experiments. 
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The octopole collision cell is tilted slightly relative to the line of sight from the source 

through the first mass analyzer. 

RESULTS AND DISCUSSION 

Comparison of Ion Extraction Methods 

In the previous work, a PE Sciex API1 instrument was used; ions were extracted 

through a single, thin metal orifice (250 ^im diam.) directly through a supersonic jet and into 

RF only rods at a background pressure of ~ 1 mPa. During ion extraction, the ions 

underwent collisions only with the Na in the curtain gas and supersonic jet. Few collisions 

with the metal walls are expected with this extraction device. 

The Finnigan TSQ 7000 used in the present work has a heated capillary interface. 

Here the ions are entrained in gas flow through a long, thin stainless steel tube (114 mm long 

x 400 p,m inner diam.). The ions then pass through a supersonic expansion and skimmer into 

an octopole ion guide, which transports the ions into a third chamber housing the MS. 

In general, it is much more difficult to observe metal chloride ions MC1X~ using the 

heated capillary interface. M(N03)X" ions often dominate even if the sample contains no 

HNO3 and percent levels of HC1. Recent measurements on a API 3000 triple quadrupole 

instrument at PE Sciex corroborate these observations.23 In atmospheric aerosols, nitric acid 

sticks readily to surfaces and can cause degassing and loss of HC1, with replacement by 

HNO3.21 Perhaps analogous processes occur during droplet production, desolvation or ion 

extraction in ESI, especially when the ions pass through a long, narrow tube in a heated 

capillary extraction device. 
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MS and CID of Nitrate Complexes of Group 1 and 2 Metals 

A mass spectrum for a Li sample is shown in Figure 1. Nitrate monomer (NO3", m/z 

= 62) and protonated dimer (H(N03)2", m/z = 125) are the main background ions. Alkali 

metals are singly charged in solution and thus yield MfNOg)?" ions. 

A typical CID product ion spectrum is shown for Li(N03)2~ in Figure 2. Nitrate is the 

only product ion observed from CID of any Group 1 M(NOs)2" species . Presumably, the 

remaining products are neutral MNO3 molecules; their presence is assumed but not 

confirmed directly. The only CID reaction for these ions can be written as follows: 

M(N03)2" NOs" + MNO3 (1) 

As shown for Li in Figure 1, a variety of cluster ions with several metal atoms are 

also observed. These cluster ions have the general formula Mx(N03)x+i~ and are especially 

abundant for Li, less so for Na and other, heavier M atoms (data not shown). These clusters 

are also much more abundant from the heated capillary interface than from the curtain gas 

interface used previously.[19] In general, the intensity distributions of the Li isotope peaks 

in the cluster ions correspond to the expected patterns, as shown by the measured and 

calculated spectra for LigCNOs)^ in Figure 3. 

A product ion spectrum from CID of the cluster Li2(N03)3- is shown in Figure 4. The 

only ionic product is the next lower species Li(N03)2- ; nitrate is not formed. CID of the 

larger lithium nitrate clusters yields various Lix(N03)x+f products, in decreasing abundance 

as more LiNOs molecules are lost (Figure 5). Again, no free NO3" is formed from metal 

nitrate clusters with more than one metal atom. 
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The Group 2 metals give primarily M(N03)3" ions, with some M2(N03)5" clusters 

(Figure 6), as expected for metal ions in the 2+ oxidation state. On CID the M(N03)3" ions 

give only N03 , and the M2(N03)s" clusters give only M(N03)3"(Figure 7). 

M(N03)3" N03 + M(N03)2 (2) 

M2(N03)5" -4. M(N03)3" + M(N03)i (3) 

These ions thus behave like those from the Group 1 metals. No M^NOsh" ions, are formed, 

i.e., the M2+ ion is not reduced during CID reactions of Mn(N03)3" for the Group 2 elements. 

MS and CID of Nitrate Complexes of Transition Metals and Group 13 Metals 

In the previous paper, 3+ metal ions in solution gave mainly M(N03)4~ ions. Those 

elements with a stable 2+ oxidation state in solution were also seen as M(N03)3" ions.[19] 

With the present system, more in-source fragmentation is observed, as shown in the spectrum 

for Fe3+ in Figure 8. While Fe(N03)4- is the most abundant ion from the Fe3+ sample , there 

is a substantial amount of the oxo product Fe0(N03)3" and also Fe(N03)3" A small amount 

of the cluster Fe20(N03)5" is observed. The assignment of this ion is confirmed by the 

expanded view of the spectrum in Figure 9. The signal ratio for (m/z 436 / m/z 438) is 0.12, 

in approximate agreement with the value of 0.126 expected for a species with Fe2 

stoichiometry. 

The various ions observed and their CID reactions are summarized in Table 1. A 

typical product ion spectrum is shown for Y(N03)4~ in Figure 10. The product ions are 

similar to the fragments observed just from CID in the ESI source. For example, the CID 

spectrum of Fe(N03)4~ looks much like the source spectrum in Figure 8, without the cluster 

Fe20(N03)5\ of course. 
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In general, the CID products observed correspond to the following reactions, which 

can occur either in the source and/or during CID in the collision cell. Again, the neutral 

molecules written in italics are identified by implication; they are not observed directly. 

1. Elimination of NOz with Formation of Oxo-Nitrate Complex 

M(N03)4 —> M0(N03)3 + NO2 (4) 

—> M02(N03)2 + 2NO2 (5) 

—> M03(N03) + 3NO2 (6) 

These reactions are favored for early transition metals but occur to some extent for Cu2+ and 

Zn2+ as well. Initially, we felt the metal atom was oxidized to higher oxidation states during 

these reactions. For example, the Fe atom in Fe0(N03)3" could be considered to be in the +4 

state, if O is present as the conventional O2". However, the ionization energy of Fe3+ is 

almost 55 eV24, too high to be accessible with the collision energies used here. Thus, we 

consider that the metal atom stays in the same oxidation state in the oxo-nitrate complex, 

with the O atom present as O . 

2. Reduction of Metal Atom with Oxidation of Nitrate to NO3 

Cun(N03)3" -4 CuI(N03)2" + NO3 (7) 

FeIU(N03)4" —> Fen(N03)3" + NO3 (8) 

The metal atom is reduced, while a nitrate ion is oxidized to N03. The N03 product 

molecule may also dissociate. Ions containing Fe2+ from solutions of Fe3+ were originally 

attributed to electrochemical reduction in solution at the ESI needle.19 The fact that they can 

also be observed as CID products shows that such ions can be formed in the gas phase via 

this internal redox process. For the metals In3+ and Ga3+, this internal redox process can 

occur to yield M2+, detected as Mn(N03)3", even though the 2+ oxidation state is not common 
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in solution for these elements. In contrast, Yin(N03)4~ yields Y^NOg)?" but not Y^NOgh" 

(Figure 10). 

3. Elimination of Nitrate, Generation of Neutral Metal Nitrate Complex 

Fe(N03)4" -> N03" + Fe(N03)3 (9) 

Complexes with one transition metal or Group 13 metal atom yield NOg as a minor CID 

product, in contrast to the Group 1 and 2 metals, where NO3" is the only product ion . 

Threshold Kinetic Energy Measurements for NO3' NOi + O 

Armentrout25"26 describes a number of validation criteria for determining the kinetic 

energy threshold for CID reactions.27 29 These validation experiments are particularly 

important here because the present work is done with a commercial triple quadrupole MS 

built for analysis, not for accurate thermochemical measurements.30-34 

One point is to evaluate the kinetic energy spread of the ion beam. Application of a 

stopping potential to the quadrupole rods indicates the ion energy spread is ~ 0.7 eV FWHM 

in the lab frame. A second point is to use a low collision gas pressure to minimize 

complications due to multiple collisions. For threshold measurements the inlet pressure is 

reduced from 0.13 to 0.026 Pa. At 0.026 Pa the mean free path in the collision cell is 

estimated to be approximately 24 cm, slightly longer than the ocotopole (18 cm). Thus, there 

still may be some contribution from multiple collisions. Reducing the pressure attenuates the 

product ions to only a few percent of the parent ion signal, but measurable signals remain. 

A third criterion is to calibrate the collision energy using a known process. We 

measure CID of NO3", m/z = 62, a species produced in the same fashion as the M(NOs)x" 

complexes of direct interest. 
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NOg" -» N02" + O (10) 

D0(O-NO2") = D0(O-NO2) + EA(N02) - EA(N03) 

= 4.648 + (-2.273) - (-3.937) = 6.312 eV35"36 

N02" is the only measurable product. 

One plot in Figure 11 shows the measured cross section for Reaction (10) as a 

function of collision energy in the center-of-mass frame of reference. These data are also 

converted to cross sections by the method described by Armentrout, 26 Eqn. 7 with CFo =18, 

n=l.l, E0 = 5.55. The measured threshold for appearance of N02" is 5.55 eV, lower than the 

calculated value by 0.76 eV. If anything, the apparatus underestimates the actual collision 

energy. 

Threshold Measurements for Daughter Ions from 

Data obtained in single reaction mode for three CID products from Fe(N03)4~ are 

shown in Figure 12. The thresholds for production of Fe0(N03)3" and Fe(N03)3" are very 

low, only 0.5 and 0.8 eV, respectively. Those for Fe02(N03)2" and Fe0(N03)2" are slightly 

higher, 1.5 and 1.8 eV (data for the latter value are not shown). These values should be 

treated as approximations only, as the 0.76 eV offset found from dissociation of N03" and 

other sources of error in the threshold measurements may be substantial. The main point is 

that low collision energy is sufficient to initiate these CID processes. 

The threshold for elimination of N03 from Fe(N03)4~ is presented in Figure 13. 

Nitrate ion is a minor product, so there is more scatter in the plot than in those of previous 

figures. Nevertheless, the threshold for nitrate elimination (Reaction 9) can be assigned to be 

approximately 2.0 eV. If the offset found for N03 —> N02" + O is added, the actual 
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threshold is 2.76 eV, a reasonable value for a bond energy between a metal ion and an 

anionic ligand of moderate complexing strength. 

Thermochemical Considerations 

Consider the following thermodynamic cycle for conversion of Fe(N03)4" to 

Fe(N03)3" : 

Fe(NOg)4 —> Fe(NC>3)3 + NO3 

Fe(N03)3 Fe3+ + 3N03" 

Fe3+ + e" -> Fe2+ 

NO3 N03 + e" 

Fe2+ + 3NOV -4. FefNChW 

Fe(NÛ3)4 —> Fe(NÛ3)3 + NO3 

Dq( O3N —Fe(N03)3) ~ 2.76 eV 

Z Do (Fe3+-N03") = ? 

-IE(Fe2+) = -30.651 eV 

-EA(N03) = 3.937 eV 

- SDn(Fe2+-NOO =? 

Most of the Fe - N03 dissociation energies are not known, but the difference between the Do 

sums for the Fe3+ and Fe2+ nitrates can hardly be more than a few eV. Thus, the very large 

negative value for the third ionization energy of Fe should make this reaction highly 

exothermic. It is interesting that the ion Fe(N03)4~ survives the collisions in the extraction 

process at all; it is, in fact, the most abundant ion from Fe3"1" solutions under the conditions 

used. 
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CONCLUSIONS 

The observations reported herein can be summarized as follows: 

1. Complexation with nitrate can stabilize some highly reactive species with high internal 

energies. 

2. Some metal nitrate ions undergo internal redox processes during CID, such as conversion 

of M3+ to M2+, even for elements like In3+ and Ga3+ that do not normally have lower 

oxidation states in solution. Presumably, such reductions are accompanied by oxidation of 

N03" to N03. 

3. Oxo ions are prominent from CID of triply charged metal nitrate complexes, as expected 

for "hard" metal cations. 

4. Cluster ions with more than one metal atom are most evident for small metals with low 

charges 

5. The type of ion extraction device affects the species observed. Nitrate ions are apparently 

enhanced by the heated capillary interface. The ESI conditions may also play a role. 

6. The CID reactions of Fe(N03)4~ ions have low kinetic energy onsets of ~ +0.5 to 2 eV and 

are expected to be exothermic. 
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Table 1: MSMS of alkali and alkaline earth metal complexes with nitrate. 

Metal complex / parent Product(s) / Reactions 

Li(N03)z Li(N03)2" -4 LiN03 + NO3 

Li2(N03)3" Li2(N03)3" LiN03 + Li(N03)i 

Na(N03)2" Na(N03)2" —> NaN03 + NO 3 

NazCNOsh" Na2(N03)3 —> NaN03 + Na(NO3)2 

KfNCWz- K(N03)2 —> KN03 + NO3 

Kz(N03)3- K2(N03)3- KN03 + K(N03)2' 

Rb(N03)2" Rb(N03)2" RbN03 + NO3' 

Cs(N03)2- CS(N03)2" -> CsN03 + NO3 

CS2(N03)3" CS2(N03)3" -4 CSN03 + Cs(N03h~ 

Be(N03)3" Be(N03)3 —> Be(N03)2 + NO3 

Mg(N03)3" Ng(N03)3' -» Mg(N03)2 + N03 

Ca(N03)3" Ca(N03)3" -> Ca(N03)2 + NOi 

Ca2(N03)5- Ca2(N03)5" ->Ca(N03)2 + Ca(N03)3' 

Sr(N03)3- Sr(N03)3' -> Sr(NÛ3)2 + #0/ 

Ba(N03)3" Ba(N03)3 —> Ba(N03)2 + NO3 
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Table 2: MSMS of transition metal and 3A metal complexes with nitrate. 

Metal complex / parent Product(s) / Reactions 

Sc(NÛ3)4 

SC(N03)4" -> Sc0(N03)3 + N02 

Sc(NÛ3)4 SC(N03)3" -4 SC02(N03)2" + 2N02 Sc(NÛ3)4 

SC(N03)3" SC(N03)3 + NO3' 

Cr(N03)4 

Cr(N03)4" -> C r0(N03)3 + N02 

Cr(N03)4 Cr(N03)3" Cr02(N03)2 + 2N02 Cr(N03)4 

Cr(N03)3' -> Cr03(N03)i + 3N02 

Mn(N03)3" 

Mn(N03)3 —> MX\0(N03)2 + N02 

Mn(N03)3" Mn(N03)3" -4 Mn02(N03) ' + 2N02 Mn(N03)3" 

Mn(N03)3 —> Mn(N03)2 + NO 3 

FefNOaV 

Fe(N03)4 —> Fe0(N03)3 + N02 

FefNOaV 
Fe(N03)4" Fe02(N03)i + 2N02 

FefNOaV 
Fe(N03)4" -» Fe03(N03) ' + 3N02 

FefNOaV 

mFe(N03)4" uFe(N03)3~ + N03 

Fe0(N03)3 

Fe0(N03)3 —> Fe02(N03)2 + N02 

Fe0(N03)3 
Fe0(N03)3 —> Fe03(N03) + N02 

Fe(N03)3' 

Fe(N03)3" -> Fe0(N03)2 + N02 

Fe(N03)3' 
Fe(N03)3 —> Fe02(N03) + NO2 

Co(N03)3" 

CO(N03)3- -> CoO(N03)2 + N02 

Co(N03)3" 
CO(N03)3" Co02(N03) • + 2N02 

Co(N03)3" 

CO(N03)3" CO(N03)2 + N03 

Ni(N03)3' 

Ni(N03)3" -> Ni0(N03)2 + N02 

Ni(N03)3' 
CO(N03)3" Co(N03)2 + N03 
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nCu(N03)3" 

nCu(N03)3" -» ICu(N03)2" + N03 

nCu(N03)3" UCU(N03)3' nCu(N03)2" + NO3 

^CU(N03)2" 

ICu(N03)2"—>1CU0(N03) ' + N03 

^CU(N03)2" iCU(N03)2'-> 1CU(N03) + NO 3 

Zn(N03)3 

Zn(N03)3 —> ZnO(N0 3)2 + N02 

Zn(N03)3 —> Zn(N03)2 + NO3 

A1(N03)4" -> A10(N03)Ï + NO2 

A1(N03)4-A1(N03)4-
A1(N03)4" -4 Al02(N03)i + 2N02 

A1(N03)4" -> Al(N03)3 + NOi 

Ga(N03)4" -> Ga0(N03)3 + N02 

Ga(N03)4' Ga(N03)4' 
IUGa(N03)4- -> llGa(N03h~ + N03 

Ga(N03)4 —> Ga(N03)3 + N03 

In(N03)4" -> In0(N03)3 + N02 

In(N03)4" In(N03)4" 
niIn(N03)4" -4 nIn(N03)3 ' + N03 

A1(N03)4" Al(N03)3 + NO3' 
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Fig. 1. Mass spectrum of 0.1 mM Li in 25/75 water/methanol solvent 
with 0.05% HN03. Cluster ions Lin(N03)n+i" (n=l-13) are observed. 
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Fig. 2. CID product spectrum of Li(N03)2~ (m/z 131), which fragments into LiN03 
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Fig. 3. Expanded scan of isotope peaks of LigCNOg)^. Thin black lines are 
measured intensities, gray bars are the calculated isotope distributions. 
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Fig. 4. CID product spectrum of Li2(N03)3" (m/z 200), which 
fragments into Li(N03)2" and LiN03. Note that Li2(N03)3" does not 
make N03" directly. The collision energy and collision gas pressure 
were 10 eV lab and 0.13 Pa. 
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Fig. 5. CID product spectrum of Li4(N03)5" (m/z=338), which fragments into 
various Li nitrate clusters, but not NO3". The collision energy and collision 
pressure were 22 eV lab and 0.10 Pa, respectively. 
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Fig. 6. Mass spectrum of 0.1 mM Ca in 25/75 water/methanol solvent 
with 0.05% HN03. Ca(N03)3" (m/z=226) and Ca2(N03)5" (m/z=390) 
were observed. 
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Fig. 7. CID product spectrum of CaaCNOg^" (m/z=390), which fragments 
into Ca(N03)2 and Ca(N03)3". Collision energy and pressure are 20 eV lab 
and 0.13 Pa. 
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Fig. 8. Mass spectrum of 50 ppm Fe in 25/75 water/methanol solvent with 
0.05% HN03. The major ions are Fe(N03)4~ (m/z 304), Fe0(N03)3" (m/z 258) 
due to in-source fragmentation, and some Fen(N03)3" (m/z 242) from reduction 
ofFem(N03V. See next figure for enlargement of region around m/z = 438. 
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Fig. 10. CID product spectrum of Y(N03)4" (m/z=337), which fragments into 
Y0(N03)3~, Y02(N03)2", Y(N03)2" and N03\ The collision energy and pressure 
are 20 eV lab and 0.13 Pa. 



www.manaraa.com

Energy (CM, ev) 

K) 

Fig. 11. Cross section for N03" ® NO2" + O vs. collision energy in center 
of mass frame of reference. The diamonds are the direct experimental 
results, while the dashes are the converted experimental results using the 
procedure in ref. 26. NO2" has an appearance threshold of 5.55 eV. 
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Fig. 12. Measured cross sections for production of FeO(NOg)3, 
Fe(NO])3 and Fe0i(N03)2 from Fe(N03)4~. The thresholds are only 0.5, 
0.8 and 1.5 eV respectively. 
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Fig. 13. Measured cross sections for production of nitrate: 
Fe(N03)4" —» N03" + Fe(N03)3. The threshold is 2.0 eV. 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

The focus of this dissertation work is to expand the novel applications of inductively 

coupled plasma mass spectrometry (ICP-MS) and electrospray mass spectrometry (ESI-MS) 

to inorganic and biological fields. In Chapter 2, a new method was developed to characterize 

the surface of steel by confined acid dissolution. It was found that in a complex matrix as 

steel the contents of elements, i.e. Mn and Al, that are closely related to the bulk element, i.e. 

Fe, can be determined pretty accurately. Conversely, other refractory elements like Ti and 

Ta have poor recovery, which is probably due to the difference in the acid dissolving kinetic 

rates. The methodology can be readily adapted to metals or alloys containing simple matrix 

to determine trace element contents. Interestingly, this partial dissolution procedure also 

provides information about the speciation of the elements in the solid, which may have other 

practical applications. 

Future work on the project can investigate the optimal acid mixture for sample with 

either complex or simple matrix, and to reduce the amount of material removed by the 

dissolution. It would be valuable to study whether heating the solid sample or some of the 

new microwave extraction procedures, like those used for "soft" extraction of intact 

compounds from solids,1 would make the dissolution rate more uniform yet still slow enough 

for depth resolution for the problem elements found in this study. 

We successfully coupled perfusion chromatography and ICP-MS to monitor the 

incorporation of heavy metal, namely uranium, during bioremediation. It was demonstrated 
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that B. subtilis and S. putrefacient were able to uptake U, spiked in the growing medium. 

Most of the u was incorporated intrinsically to the bacteria although bacteria can bind U 

extrinsically. Please refer to APPENDIX for the abstract and analytical chemistry2 for the 

full article. In Chapter 3, we attempted to study the behavior of bacteria in the inductively 

coupled plasma, shed some light on its fundamental influence on the elemental 

quantification, and explore the possibility of using inorganic standards as the calibrant. The 

time-resolved U+ signal from ICP-MS measurements indicated that bacteria behave similarly 

as the large particles in the ICP.3 The positive U+ spike was not due to the salvation effect. 

Sonication released intracellular species that are bound with uranium from the bacteria. The 

chromatographic results showed that the u-bound species had almost the same retention as 

the free inorganic U, implying that they are small in size and would have similar ionization 

efficiency as aqueous u standard. Therefore, quantification of U in intact bacteria is possible 

using inorganic u standard. This method can be readily applied in the biological and medical 

research where accurate quantification of trace elements, such as Zn and Mg, in human, is 

vital. It was found that PEEK tubing was able to absorb intact bacteria. 

Future research can be on two parts. The first one is to apply the method to monitor 

the bioremediation of other environmentally important elements such as plutonium. It would 

be interesting to know what mechanism is truly responsible for the transportation of U from 

the outside medium into the intracellular environment. This later part may need to use 2-D 

gel electrophoresis, followed by structural determination by ESI-MS. 

Finally, in Chapter 4, electrospray mass spectrometry was proved to be a valuable 

technique for inorganic metal study. Complexation with nitrate can stabilize some highly 

reactive species with high internal energies. Some metal nitrate ions undergo internal redox 
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processes during CID, such as conversion of M3+ to M2+, even for elements like In3+ and Ga3+ 

that do not normally have lower oxidation states in solution. Presumably, such reductions are 

accompanied by oxidation of NO3" to NO3. The study demonstrated that commercial grade 

triple quadrupole device can be used to estimate the bond dissociation energy. The CID 

reactions of Fe(NC>3)4" ions have low kinetic energy onsets of ~ + 0.5 to 2 eV and are 

expected to be exothermic. Future work will continue to investigate how well the anion 

ligands, such as nitriate and chloride, can stabilize reactive organic compounds. 
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APPENDIX 

PORE EXCLUSION CHROMATOGRAPHY - INDUCTIVELY 

COUPLED PLASMA - MASS SPECTROMETRY FOR MONITORING 

ELEMENTS IN BACTERIA: A STUDY ON MICROBIAL REMOVAL 

OF URANIUM FROM AQUESOUS SOLUTION 

A paper published in Analytical Chemistry (2003, 75, 6901-6905) 

Bo Zhang, Fumin Li, R. S. Houk and Daniel W. Armstrong 

ABSTRACT The interstitial spaces between spherical particles in a packed column can 

act as a sieve that passes microorganisms below a certain size. If the bed is a perfusion-type 

material (containing a binary distribution of large and small pores), colloidal-size 

microorganisms are subject only to pore exclusion, while all molecules are subject to size 

exclusion among the various pores. Thus, microorganisms elute first, followed by 

macromolecules, and then small molecules. Coupling this separation method to an ICP 

magnetic sector mass spectrometer provides a sensitive, direct means to study the microbial 

uptake of heavy metals (i.e., uranium) from their surrounding environments. Multiple metal 

ions can be monitored in the microorganism and in the surrounding solution. In this way, 

definitive information can be provided for the remediation of radioactive waste sites. The 

effect of uranium on microbial growth is also discussed. 
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